Recall that in order to disprove a particular assertion, one must give an example in which the hypothesis is satisfied, but the conclusion is false.

Example:

• Prove/disprove: Every natural number is a sum of three squares of natural numbers.

Solution. The assertion is false, because 7 is not a sum of three squares of natural numbers.

Basics of logical deduction

Recall the notations from the class: Given assertions p, q, one defines their (logical) disjunction $p \lor q$, the (logical) conjunction $p \land q$, and the (logical) negation $\neg p$.

1) Using the table of truth, prove the following assertions from class:

a) $\neg(p \lor q)$ is the same as $\neg p \land \neg q$.

b) $\neg(p \land q)$ is the same as $\neg p \lor \neg q$.

2) Show that using parentheses is essential for building desired unambiguous assertions. Namely, the assertion $p \lor q \land r$ is ambiguous. Indeed, the possible interpretations are

(i) $(p \lor q) \land r$

(ii) $p \lor (q \land r)$

and prove that the assertions (i) and (ii) are not equivalent.

3) Using the table of truth, prove the following properties of \lor and \land:

a) $(p \lor q) \lor r$ is the same as $p \lor (q \lor r)$, and $(p \land q) \land r$ is the same as $p \land (q \land r)$.

b) $(p \lor q) \land r$ is the same as $(p \land r) \lor (q \land r)$.

Terminology: Property a) is called the associativity of \lor, respectively \land. Property b) is called the distributivity of \land with respect to \lor.

c) Is \lor distributive with respect to \land?

Recall the quantifiers \forall and \exists, their usage, and in particular the their negations: If $p(x)$ is an assertion depending on x, then one has:

i) $\neg(\forall x \ p(x))$ is the same as $\exists x \ (\neg p(x))$.

ii) $\neg(\exists x \ p(x))$ is the same as $\forall x \ (\neg p(x))$.

4) Recall that 0 is, by definition, a natural number. Consider the assertion in plain English:

(*) Every natural number less than ten is a sum of three squares of natural numbers.

a) Write the above assertion using quantifiers.

b) What is the negation of the above assertion in plain English.

c) Write the negation of the above assertion using quantifiers.

d) Is the above assertion true?

5) Recall that a real number x is a square of a real number iff $x \geq 0$. Consider the implication:

\[x, y \in \mathbb{R} \Rightarrow \exists z \in \mathbb{R} \text{ s.t. } x^2 + y^2 = z^2 \]
a) Formulate the above implication as an assertion in plain English.
b) Write the negation of the above implication, both with qualifiers, and in plain English.
c) Prove that the implication above is true, both directly, and arguing by contradiction.

Sets and maps
Recall that we always work in the Zermelo-Fraenkel System of Axioms ZF, google it! and spend some time trying to get used to the axiomatic way of thinking and working with sets!!!

6) Let A, B, X, Y, \ldots denote sets. Prove the assertions from the class:
 a) X is the only element of $\{X\}$, and $\{X\}$ is not a subset of X.
 b) $\{(A, B)\} = \{(X, Y)\}$ iff $A = X$, $B = Y$.

Terminology: One denotes $(A, B) := \{\{A\}, \{A, B\}\}$, and called it the (ordered) pair with entries (or coordinates) A, B.

 c) Prove that $(A, B) = (B, A)$ iff $A = B$. Hence ordered pairs are not commutative.

7) Let A be an arbitrary set, $\hat{A} := \mathcal{P}(A)$ be the power set of A, and $\hat{\hat{A}} = \mathcal{P}(\hat{A})$ be the power set of \hat{A}. Prove the following:
 a) For all $X, Y \in A$ one has that $\{X\}, \{X, Y\} \in \hat{A}$.
 What is the converse assertion of a), and is the converse assertion true?
 b) For all $X, Y \in A$, one has that $\{(X, Y)\} \in \hat{\hat{A}}$.

8) Using the definitions of $\cup, \cap, \backslash, \times$, prove the following:
 a) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ and $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
 More general: $(\bigcap_{i \in I} A_i) \cup C = \bigcap_{i \in I} (A_i \cup C)$ and $(\bigcup_{i \in I} A_i) \cap C = \bigcup_{i \in I} (A_i \cap C)$.
 b) de Morgan laws: $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$, $C \setminus (A \cap B) = C \setminus A \cup C \setminus B$.
 More general: $C \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (C \setminus A_i)$ and $C \setminus (\bigcap_{i \in I} A_i) = \bigcup_{i \in I} (C \setminus A_i)$.
 c) $(A \cup B) \times C = (A \times C) \cup (B \times C)$ and $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
 More general: $(\bigcup_{i \in I} A_i) \times C = \bigcup_{i \in I} (A_i \times C)$ and $(\bigcap_{i \in I} A_i) \times C = \bigcap_{i \in I} (A_i \times C)$.

9) Let $f : A \to B$, $g : B \to C$ be maps, and consider $g \circ f : A \to C$. Prove the following:
 a) If f and g are injective (reps. surjective), then $g \circ f$ is injective (reps. surjective).
 Is the converse assertion true, i.e., if $g \circ f$ is injective (reps. surjective), is it true that f and g are injective (reps. surjective)?
 b) If f and g are bijective, then $g \circ f$ is bijective. Is the converse assertion true?

Definitions. Let $f : X \to Y$ be an arbitrary map. For subsets $A \subset X$ and $B \subset Y$ define:
 1) $f(A) := \{y \in Y \mid \exists x \in A \text{ with } f(x) = y\}$, called the image of A under f.
 2) $f^{-1}(B) := \{x \in X \mid f(x) \in B\}$, called the pre-image of B under f.

10) Prove/disprove that for all subsets $A', A'' \subset X$ and $B', B'' \subset Y$ one has:
 a) $f(A' \cap A'') = f(A') \cap f(A'')$, respectively $f(A' \cup A'') = f(A') \cup f(A'')$.
 b) $f^{-1}(B' \cap B'') = f^{-1}(B') \cap f^{-1}(B'')$, respectively $f^{-1}(B' \cup B'') = f^{-1}(B') \cup f^{-1}(B'')$.
 (•) The same questions provided f is injective, resp. surjective, resp. bijective.