Math 202 / Problem Set 10 (two pages)

Due: Mo, Nov 27, 2017

Recall: (Google it!) Definition of a topology and a topological space \(X, \tau_X \); distance map and metric space \(X, d_X \) and the topology \(\tau_{d_X} \) defined by the distance function \(d_X \) on \(X \); hence \(U \in \tau_{d_X} \iff U \) is an (arbitrary) union open balls \(B(x_i, \epsilon_i), i \in I \). Further, recall that the \(U \in \tau_X \) are called open sets, and their complements \(T = U \setminus U \subset X \) are called closed sets.

1) In the above notations, prove/disprove/answer the following:
 a) If \(U_1, \ldots, U_n \in X \) are neighborhoods of \(x \in X \), then \(\cap_{i=1}^n U_i \) is neighborhood of \(x \).
 b) A subset \(U \subset X \) is open iff \(U \) is neighborhood for all \(x \in U \).

2) Let \(X, d_X \) be a metric space. Prove the following assertions from the class:
 a) If \(x' \in B_X(x, \epsilon) \) and \(x' := \epsilon - d(x, x') \), then \(\epsilon' > 0 \), and \(B(x', \epsilon') \subset B(x, \epsilon) \).
 b) \(U \subset X \) is open iff for every \(x \in X \) there exists \(\epsilon_x > 0 \) such that \(B(x, \epsilon_x) \subset U \).
 c) A finite intersection of open balls is an open subset.

Recall that the \(xy \)-coordinate plane \(X := \mathbb{R}^2 \) is a metric space w.r.t. the Euclidean metric defined by \(d_E(P_1, P_2) := \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \) for all points \(P_1 := (x_1, y_1), P_2 := (x_2, y_2) \) of \(X \). In these notation, define the following two maps \(d_1, d_\infty : X \times X \to \mathbb{R} \) by
 \[
 d_1(P_1, P_2) := |x_1 - y_1| + |x_2 - y_2|, \quad d_\infty(P_1, P_2) := \max(|x_1 - y_1|, |x_2 - y_2|).
 \]

3) Prove the following:
 a) The maps \(d_1, d_\infty \) are distance maps on \(X \).
 b) For all \(P_1, P_2 \) one has: \(d_\infty(P_1, P_2) \leq d_E(P_1, P_2) \leq d_1(P_1, P_2) \leq 2d_\infty(P_1, P_2) \).
 c) Draw the open balls \(B_{d_1}(O, 1), B_{d_E}(O, 1), B_{d_\infty}(O, 1) \), where \(O \) is the origin.
 d) Prove that the topologies \(\tau_{d_1}, \tau_{d_E} \) and \(\tau_{d_\infty} \) are the same.

[Hint to d): By Problem 2), b), a subset \(U \subset X = \mathbb{R}^2 \) is open iff for every \(P \in U \) there exists an open ball in \(U \) centered at \(P \); and by the inequalities from b) above, one has: \(B_{d_\infty}(P, \epsilon) \subset B_{d_1}(P, \epsilon) \subset B_{d_E}(P, \epsilon) \subset B_{d_\infty}(P, \epsilon) \) [WHY], etc…]

Therefore, there can be several different distance maps defining the same topology!

4) Let \(f : X \to Y \) be a map of topological spaces. Prove in all detail the assertion from the class that the following are equivalent:
 i) \(f \) is continuous.
 ii) For every \(V \subset Y \) open in \(Y \), the preimage \(U := f^{-1}(V) \subset X \) is open in \(X \).
 iii) For every \(T \subset Y \) closed in \(Y \), the preimage \(S := f^{-1}(T) \subset X \) is closed in \(X \).

[Hint: By definition, \(V \subset Y \) is open \(\iff T := Y \setminus V \) is closed, and vice-versa; and \(f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) \) [WHY], etc…]

The ring of continuous maps: Let \(X \) be an arbitrary set, and recall that the set of all the maps \(\text{Maps}(X, \mathbb{R}) \) endowed with the usual addition of maps \(f \oplus g \) and multiplication of maps \(f \bullet g \) is a commutative ring, having the constant zero map \(0_{\text{Maps}} \) as neutral element for \(\oplus \), and the constant one map \(1_{\text{Maps}} \) as neutral element for multiplication.

5) Suppose that \(X \) is a topological space. Prove in all detail the following assertions:
 a) If \(f, g : X \to \mathbb{R} \) are continuous at \(x \in X \), then \(f \oplus g \) and \(f \bullet g \) are continuous at \(x \).
b) If \(f \) is continuous at \(x \in X \), and \(f(x) \neq 0 \), then \(x \) has a neighborhood \(U_x \subset X \) such that \(f(x') \neq 0 \) for \(x' \in U_x \) and \(\frac{1}{f} : U_x \to \mathbb{R} \) is continuous at \(x \in U \subset X \).

c) The set \(C(X, \mathbb{R}) \subset \text{Maps}(X, \mathbb{R}) \) of all the continuous maps is a ring w.r.t. the addition \(\oplus \) and the multiplication \(\cdot \). Further, if \(f \in C(X, \mathbb{R}) \) satisfies \(f(x) \neq 0 \) for all \(x \in X \), then \(\frac{1}{f} : X \to \mathbb{R} \) is continuous on \(X \).

Intervals: Recall that the completed real line is \(\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\} \), and one extends the ordering \(\leq \) of \(\mathbb{R} \) to \(\overline{\mathbb{R}} \) by setting: \(-\infty < x < \infty \) for all \(x \in \mathbb{R} \). Open intervals of \(\mathbb{R} \) are the subsets \((a, b) := \{ x \in \mathbb{R} \mid a < x < b \} \), where \(a, b \in \mathbb{R} \). Closed intervals of \(\mathbb{R} \) are the subsets \([a, b] := \{ x \in \mathbb{R} \mid a \leq x \leq b \} \), for \(a, b \in \mathbb{R} \).

6) Let \(\mathbb{R}[t] \) be the ring of polynomials with real coefficients, and for \(p(t) \in \mathbb{R}[t] \) recall the polynomial function \(f_p : \mathbb{R} \to \mathbb{R} \) by \(f_p(x) = p(x) \) for \(x \in \mathbb{R} \). Prove/answer the following:

a) \(f_p \) is continuous for every \(p(t) \in \mathbb{R}[t] \), and \(f_p(\mathbb{R}) \) is an unbounded interval in \(\mathbb{R} \).

b) Give the behavior of \(f_p(x) \) as \(x \to -\infty \), respectively \(x \to \infty \), and describe \(f_p(\mathbb{R}) \).

7) For \(n \in \mathbb{N}_{\geq 0} \), consider the function \(f_n : \mathbb{R} \to \mathbb{R} \) defined by \(f_n(x) := x^n \) called the power \(n \) map. Then \(f_n \) is a polynomial map \([WHY]\), hence continuous. Prove/answer the following:

a) Let \(n = 2m + 1 \). Then \(f_n : \mathbb{R} \to \mathbb{R} \) is strictly increasing, and \(f_n(\mathbb{R}) = \mathbb{R} \).

In particular, \(\forall \ y \in \mathbb{R} \exists \text{ unique } x \in \mathbb{R} \text{ s.t. } x^n = y \). Notation. \(x := \sqrt[2m+1]{y} \).

b) Let \(n = 2m \). Then \(f_n : [0, \infty) \to [0, \infty) \) is strictly increasing, \(f_n([0, \infty)) = [0, \infty) \).

In particular, \(\forall \ y \in [0, \infty) \exists \text{ unique } x \in [0, \infty) \text{ s.t. } x^n = y \). Notation. \(x := \sqrt[2m]{y} \).

c) The \(n^{th} \) root map \(\sqrt[n]{\cdot} : [0, \infty) \to [0, \infty) \) by \(x \mapsto \sqrt[n]{x} \) is continuous and strictly increasing.

[Hint. To a): \(x^{2m} \geq 0 \), hence \(x < y \) implies: \(x^{2m} < y^{2m} \), hence \(x^{2m+1} = x x^{2m} < y y^{2m} \). One has \(\mathbb{R} = \cup_{k \in \mathbb{N}} (-k, k) \), and \((-k)^{2m+1} < -k < k^{2m+1} \), etc...Finally, us the Intermediate Value Thm, etc...To b): Argue similarly...]

Remark. \(f_n \) and \(\sqrt[n]{\cdot} \) are inverse to each other w.r.t. composition of function \([WHY]\).

The power function and the exponential function

By the above discussion, for every non-negative real number \(y_0 \in \mathbb{R}_{\geq 0} \), there exists a unique \(x \in \mathbb{R}_{\geq 0} \) such that \(x^n = y_0 \), namely, \(x := \sqrt[n]{y_0} \). In particular, given \(m \in \mathbb{Z} \), the number \(y_1 := \sqrt[m]{y_0} \) is a well defined real number \([WHY]\). Notations. \(y_0 = x^n \) and \(y_1 := \sqrt[m]{y_0} \).

8) For \(u, v > 0 \) real numbers, \(\frac{m'}{n'} \) and \(\frac{m}{n} \) rational numbers as above, prove:

a) \(\sqrt[n]{u^{m'}} = (u^{1/n})^{m'} = (u^{m/n})^{m'}; \quad (uv)^{m/n} = u^{m/n} v^{m/n}; \quad u^{m/n} u^{m'/n'} = u^{m/n + m'/n'}; \quad (u^{m/n})^{m'/n'} = u^{m/n m'/n'} \)

b) Let \((x_n)_n, x_n \in \mathbb{Q} \), satisfy \(x_n \to x \in \mathbb{R} \). Then \((u^{x_n})_n \) is Cauchy, and \(u^x := \lim_n u^{x_n} \) depends on \(x = \lim_n x_n \) only.

9) For \(\alpha \in \mathbb{R} \), the power-\(\alpha \) function \(f_\alpha : (0, \infty) \to (0, \infty) \), \(f_\alpha(x) := x^\alpha \) is continuous and:

a) \(f_0(x) = x^0 = 1 \) for all \(x \in (0, \infty) \).

b) \(f_\alpha \) is strictly increasing if \(\alpha > 0 \), respectively strictly decreasing if \(\alpha < 0 \).

10) The exponential function \(\exp_a : \mathbb{R} \to (0, \infty) \), \(\exp_a(x) := a^x \) in basis \(a > 0 \) is continuous, and:

a) \(\exp_1(x) = 1^x = 1 \) for all \(x \in \mathbb{R} \).

b) \(\exp_a \) is strictly increasing if \(a > 1 \), respectively strictly decreasing if \(0 < a < 1 \).