Due: Tu, Sept 19, 2017 (in class)

Math 202 / Problem Set 2 (two pages)

Basics

1) Consider the assertions in plain English: \(p \equiv \) (all doors will open), \(q \equiv \) (the train stops). Answer the following:

a) What is the (logical) negation in plain English of the assertion \(p \), respectively \(q \).

b) Using \(\neg \), \(\& \), \(\lor \) and \(p \), \(q \), write down the following assertion:
 “Either all doors will open, or the train does not stop.”

2) Let \(p \), \(q \) be the assertions \(p \equiv \) (more jobs), \(q \equiv \) (lower taxes), \(r \equiv \) (increase spending).

In country \(X \), statistical data show that lately more jobs were created. Explain what is logically faulty with the following assertions — dear to some politicians/economists/others:

a) “You see, since we lowered taxes, more jobs were created."

b) “You see, because we did not lower the taxes, we could increase spending, and therefore more jobs were created.”

[Hint: Write down the assertion a), b) as logical assertions using \(p \), \(q \), \(r \), and see whether the cause-effect is the one explained by politicians/economists/some; recall that “wrong implies everything”…]

3) Let \(A \), \(B \), \(C \), \(D \) be given sets, and \(x \) be elements, e.g., real numbers. Answer the following:

a) Using \(\cup \), \(\cap \), \(\setminus \) and \(A \), \(B \), \(C \), \(D \) write down the sets of all \(x \) which satisfy:
 i) \(\{ x \in A \text{ or } x \in B \} \cap x \in C \setminus x \notin D \); ii) \(x \in A \text{ or } \{ x \in B \land x \in C \} \land x \notin D \).

b) Write as a union of disjoint intervals the sets of the real numbers \(x \in \mathbb{R} \) satisfying:
 i) \(\{ x < 20 \land x^2 < 100 \} \lor x \notin (-\infty,-1] \); ii) \(x < 20 \land \{ x^2 < 100 \text{ or } x \notin (-\infty,-1] \} \).

(* Does the place of the parentheses matter?

4) Let \(A \), \(B \) be sets. Answer the following:

a) \(\exists f : A \rightarrow B \) injective iff \(\exists g : B \rightarrow A \) surjective.

b) \(f : A \rightarrow B \) is injective iff \(\exists g : B \rightarrow A \) surjective satisfying \(g(f(x)) = x \) for all \(x \in A \).

c) \(f : A \rightarrow B \) is surjective iff \(\exists g : B \rightarrow A \) injective satisfying \(f(g(y)) = y \) for all \(y \in B \).

Cardinality of sets. Recall that the cardinality of a set \(A \), denoted by \(|A| \), is, intuitively, a kind of size of \(A \). Recall that \(|A| \leq |B| \) \(\text{Def} \Rightarrow \exists f : A \rightarrow B \) injective, and that one has:

Theorem (Cantor, Bernstein, Schroeder). \(|A| \leq |B| \text{ and } |B| \leq |A| \text{ if and only if there exists } f : A \rightarrow B \) bijective.

Definition. Let \(X \) be a set. Recall the following:

- \(X \) is called finite of cardinality \(|X| = n \geq 0 \), if either \(X = \emptyset \), and then \(|X| := 0 \), or \(\exists f : \{1, \ldots, n\} \rightarrow X \) bijective, thus \(X = \{x_1, \ldots, x_n\} \), where \(x_i := f(i) \), \(1 \leq i \leq n \).
- \(X \) is called countable, if \(|X| = |\mathbb{N}| \), i.e., there exists a bijection \(f : X \rightarrow \mathbb{N} \).
- \(X \) is called at most countable, if \(|X| \leq |\mathbb{N}| \).
5) Let \(X \) be a non-empty set. Prove/disprove the following:
 a) If \(X \) is finite, then every injective (resp. surjective) map \(f : X \to X \) is bijective.
 b) If \(X \) is infinite, there exists injective (surjective) \(f : X \to X \) which are not bijective.

6) Let \(X \) be an arbitrary set, and \(\mathcal{P}(X) := \{ A \mid A \subseteq X \} \) be the power set of \(X \). Prove:
 a) If \(|X| = n \) is finite, then \(|\mathcal{P}(X)| = 2^n \).
 b) One has always: \(|X| < |\mathcal{P}(X)| \). Deduce from this that \(|\mathbb{N}| < |\mathbb{R}| \).

 [Hint to the second part of b): Define \(f : \mathcal{P}(\mathbb{N}) \to \mathbb{R} \) by \(f(A) := a_0a_1a_2\ldots a_n\ldots \) for \(A \subseteq \mathbb{N} \), where \(a_n = 1 \) if \(n \in A \), and \(a_n = 0 \) if \(n \notin A \). Then \(A \neq A' \) implies \(x_A \neq x_{A'} \) (WHY), hence \(f \) is injective, etc...]

7) Let \(X, Y \) be finite sets, say \(|X| = m \) and \(|Y| = n \). Prove/disprove the following assertions:
 a) \(|X \cup Y| + |X \cap Y| = |X| + |Y| \). What is the corresponding assertion for \(|X \cup Y \cup Z| \)?
 b) \(|X \times Y| = |X| \cdot |Y| \). What is the corresponding assertion for \(|X \times Y \times Z| \)?

8) Let \(A, B, A_n, n \in \mathbb{N} \) be at most countable sets. Prove the following assertions:
 a) \(A \times B \) is at most countable. Is the same true for \(A_0 \times \cdots \times A_n \) for all \(n \in \mathbb{N} \).
 b) \(A \cup B \) is at most countable. Is the same true for \(\bigcup_{n \in \mathbb{N}} A_n \)?
 c)* Is the same true for the (infinite cartesian) product \(A_0 \times \cdots \times A_n \times \ldots \)?

9) Complete the proof of the assertions from the class:
 a) + and \(\cdot \) in \(\mathbb{N} \) are associative, commutative, and 0, respectively 1 are neutral elements. Further, \(\cdot \) is distributive w.r.t to +
 b) + and \(\cdot \) have cancelation property in \(\mathbb{N} \), respectively \(\mathbb{N}_{>0} \), i.e., for \(n, m, k \in \mathbb{N} \) one has:
 - \(m + k = n + k \Rightarrow m = n \).
 - \(m \cdot k = n \cdot k \Rightarrow m = n \), provided \(k > 0 \).

10) Recall that for \(m, n \in \mathbb{N} \), one says that \(m \leq n \) if there exists \(k \in \mathbb{N} \) such that \(n = m + k \). Complete the proof of the assertions from the class:
 \(\leq \) is compatible with + and \(\cdot \).

That is, for all \(n, m, k \in \mathbb{N} \) one has:
 a) \(m \leq n \) iff \(m + k \leq n + k \).
 b) \(m \leq n \) iff \(m \cdot k \leq n \cdot k \), provided \(k > 0 \).