Math 202 / Problem Set 4 (two pages)

1) A relation R on a set A is called a quasi-ordering, if R is reflexive and transitive (but not necessarily anti-symmetric). For a quasi-ordering R on A, define a relation \sim_R on A by $x \sim_R y \overset{\text{def}}{=} xRy \& yRx$. Prove the following:
 a) \sim_R is an equivalence relation on A, and let $\hat{A} := A/\sim_R$ be the set of equivalence classes.
 b) Define a relation \leq on \hat{A} by $\hat{x} \leq \hat{y} \overset{\text{def}}{=} xRy$. Then \leq is a (well defined) ordering on \hat{A}.
 (* What is the converse to a), b) above?

2) Let X be a non-empty set, and recall the symmetric difference $A \Delta B := (A \setminus B) \cup (B \setminus A)$ on $\mathcal{P}(X)$. Prove/disprove the following:
 a) The difference $A \setminus B$ on $\mathcal{P}(X)$ is not associative/commutative/has no neutral element.
 b) $\mathcal{P}(X), \Delta$ is an abelian group.

3) In the notation from Problem 2) above, prove/answer the following:
 a) $\mathcal{P}(X), \Delta, \cap$ is a commutative ring.
 b) Which elements in the ring $\mathcal{P}(X), \Delta, \cap$ are invertible?

4) Prove/answer the following:
 a) There exist $\sigma, \tau \in S_3$ such that $(\sigma \cdot \tau)^2 \neq \sigma^2 \cdot \tau^2$.
 b) Solve the equations $x \circ \begin{pmatrix} 1 2 3 \\ 2 3 1 \end{pmatrix} = \begin{pmatrix} 1 2 3 \\ 2 3 1 \end{pmatrix}$ and $\begin{pmatrix} 1 2 3 \\ 2 3 1 \end{pmatrix} \circ x = \begin{pmatrix} 1 2 3 \\ 2 1 3 \end{pmatrix}$ in S_3.
 c) Find the smallest n_G such that $g^{n_G} = e_G$ for all $g \in G$, in the following cases:
 i) $G = S_3$; ii) $G = S_5$.

5) Denote i) $A_1A_2A_3$ triangles; ii) $B_1B_2B_3B_4$ quadrangles; iii) $C_1C_2C_3C_4C_5$ pentagons. Depending of further properties of these shapes, write in each case the group of transformations as permutation groups of the vertices. [Hence the results will be subgroups of S_3, S_4, S_5, respectively [WHY]. Recall what we did/said in class, e.g., in the case of triangles $A_1A_2A_3$, the group is S_1, S_2, or S_2 [WHY], etc.]

The monoid/group/ring of functions

Let X, T be non-empty sets, and $\text{Maps}(X, T) := \{f \mid f : X \to T \text{ abstract map}\}$. Given a composition law \cdot on T, define the *operation* on $\text{Maps}(X, T)$ by $(f \cdot g)(x) := f(x) \cdot g(x)$.

6) Prove/disprove the following assertions about the composition law \cdot defined above:
 a) \cdot is associative, reps. commutative iff \cdot is so.
 b) \cdot has a neutral element e iff \cdot has a neutral element e_\cdot. What is e_\cdot as a function?
 c) $f \in \text{Maps}(X, T)$ is invertible w.r.t. \cdot iff $f(x) \in T$ is invertible w.r.t. \cdot for all $x \in X$.

7) In the context of Problem 4) above, prove or disprove the following:
 a) G, \cdot is an (abelian) monoid, reps. group iff $\text{Maps}(X, G), \cdot$ is so.
 b) $R, +, \cdot$ is a (commutative) ring with 1_R iff the corresponding $\text{Maps}(X, R), \uplus, \cdot$ is so.
 (●) Question: Is the same true for (skew) fields $R, +, \cdot$?

Language: $\text{Maps}(X, T)$ is called the monoid/group/ring of T-valued maps on X.

Due: Th, Oct 5, 2017 (in class)
(Cartesian) products of algebraic structures

[The product of monoids/groups/rings/(skew) fields]

Let $*$' and $*$'' be composition laws on X', respectively X''. Define the coordinate wise composition law $*: = *' \times *''$ on $X := X' \times X''$ by $(x', x'') \ast (y', y'') := (x' \ast' y', x'' \ast'' y'')$.

8) Prove/disprove:
 a) $*$ is associative, reps. commutative if and only if $*$' and $*$'' are so.
 b) $*$ has a neutral element e iff $*$' and $*$'' have neutral elements e', e''.
 c) $x := (x', x'')$ is invertible iff x' and x'' are invertible.

9) Let $G := G' \times G''$, $R := R' \times R''$ and $\ast = \ast' \times \ast''$, $\circ = \circ' \times \circ''$. Prove the following:
 1) G', \ast' and G'', \ast'' are (abelian) monoids, resp. groups, iff G, \ast is so.
 2) R', \ast', \circ' and R'', \ast'', \circ'' are (commutative) rings iff R, \ast, \circ is so.

 (●) Question: Is the same true for fields R', R''?

Miscellaenia:

10) For a commutative ring R, $+$, \cdot and $a, b, c, d \in R$, using $+$ and \cdot define on R a new “addition” by $x \oplus y = x + y + a$ and a new “multiplication” by $x \odot y = xy + bx + cy + d$.
 a) Let $R = \mathbb{Z}$ or $R = \mathbb{R}$. Find all a, b, c, d such that \mathbb{Z}, \oplus, \cdot and/or \mathbb{R}, \oplus, \cdot are rings.
 b) Solve in the ring R, \oplus, \cdot the equations $x^2 \oplus 3 \cdot x = 1_R$ and $x^2 \oplus 3 \cdot x = 0_R$.

11) Let R be a commutative ring with $1_R \neq 0_R$, and define the quaternions \mathbb{H}_R over R by: $\mathbb{H}_R := R^4 := \{a + b \imath + c \jmath + d \kappa \mid a, b, c, d \in R\}$ endowed with the coordinate wise addition $+$ and the multiplication \cdot defined by: $\imath^2 = \jmath^2 = \kappa^2 = -1_R$, $\imath \cdot \jmath = \kappa$, $\jmath \cdot \kappa = \imath$, $\kappa \cdot \imath = \jmath$.
 a) Show that $\mathbb{H} := \mathbb{H}_R$ is a skew field. And solve the equation $(1 + \imath + \jmath + \kappa) \cdot x = x \cdot \imath$.
 b) Show that $\mathbb{H}_R, +, \cdot$ is a ring with $1_{\mathbb{H}_R}$, and $\mathbb{H}_R, +, \cdot$ is commutative iff $1_R = -1_R$.

2