Recall that $\mathbb{Z} =: \mathbb{Z}/\sim := \mathbb{N} \times \mathbb{N}_{>0}/\sim$ defined as in the class, and recall the definitions of the addition $+$ and the multiplication \cdot on \mathbb{Z}. Further, recall the definition of \leq on \mathbb{Z}, and that for $a \in \mathbb{Z}$ we define the absolute value $|a|$ of a to be $|a| = a$ if $a \geq 0$, $|a| = -a$ if $a \leq 0$.

1) Complete the proof of the assertions made in the class:
 a) \cdot is associative, and distributive w.r.t. $+$
 b) The multiplication by non-zero $a \in \mathbb{Z}$ has cancellation.

2) $\mathbb{Z}, +, \cdot$ has no proper subrings, i.e., if $X \subset \mathbb{Z}$ is closed with respect to $+$ and \cdot and $X, +, \cdot$ is a ring with neutral element 1_X for \cdot, then $X = \mathbb{Z}$.

3) Complete the proof of the assertions made in the class:
 a) The ordering \leq is compatible with multiplication and has cancellation by positive numbers $a \in \mathbb{Z}$, $a > 0$.
 b) For every $a \in \mathbb{Z}$ one has $a^2 \geq 0$, and there exist a unique $n \in \mathbb{N}$ such that $a^2 = n^2$. If so, then $n = |a|$.

4) Show that one has division with remainder in \mathbb{Z}, i.e., for $a, b \in \mathbb{Z}$, $b \neq 0$ there exist unique $q \in \mathbb{Z}$, $r \in \mathbb{N}$ such that
 $$a = b \cdot q + r, \quad 0 \leq r < |b|.$$
[Hint. Intuitively, \(\sup(X) = \sqrt{2} \), but \(\sqrt{2} \notin \mathbb{Q} \) (WHY). Now make this argument mathematically correct (HOW), etc.]

Generalities

9) Let \(S_5 \) be the permutations group of \(\{1, 2, 3, 4, 5\} \), and consider \(\sigma = (1 2 3 4 5) \) and \(\tau = (1 2 3 4 5) \) as elements of \(S_5 \). Solve the following equations in \(S_5 \) for the unknown \(x \):

- a) \(x \circ \sigma = \tau \).
- b) \(x \circ x \circ \sigma = \tau \), respectively \(x \circ \sigma \circ x = \tau \).

10) Show that the following equations in the unknown \(x \) have no solutions in \(\mathbb{Q} \).

a) \(x^7 = 15 \).

b) \(x^n = a \), where \(a \in \mathbb{Q}, a \neq 0, 1 \), and \(n \in \mathbb{N}_{>0} \) sufficiently large.