Math 314 / Problem Set 2 (two pages)

Basics

- Let A, B, C, D be given sets, and x be elements, e.g., real numbers. Answer the following:
 a) Using \cup, \cap, \setminus and A, B, C, D write down the sets of all x which satisfy:
 i) $(x \in A \text{ or } x \in B) \& x \in C \& x \notin D$; ii) $x \in A$ or $(x \in B \& x \in C) \& x \notin D$.
 b) Write as a union of disjoint intervals the sets of the real numbers $x \in \mathbb{R}$ satisfying:
 i) $(x < 20 \& x^2 < 100)$ or $x \notin (-\infty, -1]$; ii) $x < 20 \& (x^2 < 100 \text{ or } x \notin (-\infty, -1])$.

 (*) Does the place of the parentheses matter?

- Answer the following:
 a) $\exists f : A \to B$ injective iff $\exists g : B \to A$ surjective.
 b) $f : A \to B$ is injective iff $\exists g : B \to A$ surjective satisfying $g(f(x)) = x \forall x \in A$.

Cardinality of sets. The cardinality of a set A, denoted by $|A|$, is intuitively a kind of size of A. Define: $|A| \leq |B| \iff \exists f : A \to B$ injective. Recall the following famous difficult:

Theorem. $|A| \leq |B|$ and $|B| \leq |A|$ if and only if there exists $f : A \to B$ bijective.

Further, X is called finite of cardinality $|X| = n \geq 0$, if either $X = \emptyset$, and then $|X| := 0$, or $\exists f : \{1, \ldots, n\} \to X$ bijective, thus $X = \{x_i := f(i) \mid i = 1, \ldots, n\} = \{x_1, \ldots, x_n\}$.

1) Let X be a non-empty set. Prove/disprove the following:
 a) If X is finite, then every injective (resp. surjective) map $f : X \to X$ is bijective.
 b) If X is infinite, there exists injective (surjective) $f : X \to X$ which are not bijective.

2) Let X be an arbitrary set, and $\mathcal{P}(X) := \{A \mid A \subseteq X\}$ be the power set of X. Prove:
 a) If $|X| = n$ is finite, then $|\mathcal{P}(X)| = 2^n$.
 b) One has always: $|X| < |\mathcal{P}(X)|$. Deduce from this that $|\mathbb{N}| < |\mathbb{R}|$.

[HINT to the second part of b): Define $f : \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ by $f(A) := a_0a_1a_2\ldots$ for $A \subseteq \mathbb{N}$, where $a_n = 1$ if $n \in \mathbb{N}$, and $a_n = 0$ if $n \notin \mathbb{N}$. Then $N \neq N'$ implies $x_N \neq x_{N'}$ (WHY), hence f is injective, etc...]

3) Let X, Y be finite sets, say $|X| = m$ and $|Y| = n$. Prove/disprove the following assertions:
 a) $|X \cup Y| + |X \cap Y| = |X| + |Y|$. What is the corresponding assertion for $|X \cup Y \cup Z|$?
 b) $|X \times Y| = |X| \cdot |Y|$. What is the corresponding assertion for $|X \times Y \times Z|$?

Composition laws

4) Let $I = [0,1]$ or $I = (0,1)$, and $A \in \mathbb{R}^{2 \times 2}$ be 2×2 matrices. In each of the following cases determine the largest monoid, respectively group in the specified set:
 - The interval I endowed with the usual addition, respectively multiplication.
 - $C^<$:= \{f : I \to I \mid f \text{ continuous increasing }\} w.r.t. $+$, resp. multiplication of functions.
 - The set of all the antisymmetric matrices $A \in \mathbb{R}^{2 \times 2}$ w.r.t. multiplication.
 - The set of all the matrices $A \in \mathbb{R}^{2 \times 2}$ having $\det(A) > 0$ w.r.t. multiplication.
- The set of matrices $A \in \mathbb{R}^{2 \times 2}$ having even integer coefficients w.r.t. addition.
- The set of matrices $A \in \mathbb{R}^{2 \times 2}$ with non-negative coefficients w.r.t. multiplication.
- The set of all the reflections about lines trough the origin w.r.t. composition of maps.
- $\mathcal{F}(X) := \{ f : X \to X \mid f \text{ arbitrary map } \}$ w.r.t. map composition.
- The unit circle $\mathbb{S} := \{ z \in \mathbb{C} \mid |z| = 1 \}$ w.r.t. multiplication.
- $S := \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) = ax + b, a, b \in \mathbb{R}, a \neq 0 \}$ w.r.t. composition \circ of maps.
- $\{2^n \mid m \in \mathbb{Z} \}$ w.r.t. multiplication.

5) Let X be a non-empty set. The symmetric difference on $\mathcal{P}(X) := \{ A \mid A \subseteq X \}$ is defined by $A \Delta B := (A\setminus B) \cup (B\setminus A)$. Prove that $\mathcal{P}(X)$ endowed with Δ is an abelian group.

6) Let S_5 be the permutations group of $\{1, 2, 3, 4, 5\}$, and consider $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$ as elements of S_5. Solve the following equations in S_5 for the unknown x:
 a) $x \circ \sigma = \tau$.
 b) $x^2 \circ \sigma = \tau$, respectively $x \circ \sigma \circ x = \tau$.

7) Describe as permutation groups of the vertices of the following transformation groups:
 a) The transformation group T_{ABCD} of the square $ABCD$.
 b) The transformation group of the regular pentagon $ABCDE$.
 c) The transformation group of the cube $ABCDAB'C'D'$ which fix the vertices A, A'.

8) Let M, \ast be a monoid with neutral element $e \in M$. Prove/disprove the following:
 a) $G := \{ g \in M \mid x \text{ has an inverse in } M \}$ endowed with \ast is a group.
 b) If for even $x \in M$ there exits $x' \in M$ such that $x \ast x = e$, then M, \ast is a group.

9) Let $R, +, \cdot$ be a commutative ring with $0_R \neq 1_R$. Recall that the set of invertible elements of R is $R^\times := \{ x \in R \mid x \text{ invertible w.r.t to multiplication} \}$. Prove/disprove:
 a) All $r \in R^\times$ are not zero divisors, i.e., for all $x \in R, x \neq 0_R$, one has that $rx \neq 0_R$.
 b) R^\times is a group with respect to the multiplication.
 c) For every $r \in R$, the set $rR := \{ rx \mid x \in R \}$. Then one has:
 - $r_1R = r_2R$ if and only if there exists $x \in R^\times$ such that $r_2 = x r_1$.
 - $rR = R$ if and only if r is invertible.

(Cartesian) products of algebraic structures

Let \ast' and \ast'' be composition laws on X', respectively X''. Define the coordinate wise composition law $\ast := \ast' \times \ast''$ on $X := X' \times X''$ by $(x', x'') \ast (y', y'') := (x' \ast' y', x'' \ast'' y'')$.

10) Prove/disprove:
 a) \ast is associative, reps. commutative if and only if \ast' and \ast'' are so.
 b) \ast has a neutral element e iff \ast' and \ast'' have neutral elements e', e''.
 c) $x := (x', x'')$ is invertible iff x' and x'' are invertible.

11) Let $G := G' \times G''$, $R := R' \times R''$ and $\ast = \ast' \times \ast''$, $\circ = \circ' \times \circ''$. Prove the following:
 1) G', \ast' and G'', \ast'' are (abelian) monoids, resp. groups, iff G, \ast is so.
 2) R', \ast', \circ' and R'', \ast'', \circ'' are (commutative) rings iff R, \ast, \circ is so.

(•) Question: Is the same true for fields R', R''?