Math 114: Typical Problems Section 12

1. Consider the line \(L_1 \) which is parallel to \(y = x + 2 \) and passing through the point \((1, 2)\) and the line \(L_2 \) which is perpendicular on the line \(2y - 2x = 1 \) and passes through the point \((3, 1)\). Answer the following:
 a) Compute the intersection \(L_1 \cap L_2 \).
 b) Does \(L_1 \) intersect the circle of radius 2 and center \((3, 2)\)?

2. Consider the line \(L \) which is parallel to \(\vec{v} = 2\vec{i} - \vec{j} - 2\vec{k} \) and passing through the point \((1, 2, -1)\) and the plane \(\mathcal{P} \) which is perpendicular on the vector \(\vec{u} = -\vec{i} - \vec{j} + 2\vec{k} \) and passes through the point \((3, 1, 0)\). Answer the following:
 a) Compute the intersection \(L \cap \mathcal{P} \).
 b) Does \(L \) intersect the sphere of radius 2 and center \((3, 2, 1)\)?

3. Compute the point on the intersection line of the planes \(x - y - z = 2 \) and \(x + y - z + 2 = 0 \) which is closest to the point \((1, 1, 1)\).

4. Which plane contains the diagonal in the \(xy \)-plane and is perpendicular on the plane \(x - y + z = 1 \)?

5. Find the distance from the \(z \)-axis to the intersection line of the planes \(x = y + z + 1 \) and \(z = 2x + 2y + 1 \).

6. Find the value of the \(x \)-coordinate where the plane through the points \((4, 1, 1), (1, 2, 1), \) and \((1, 1, 2)\) intersects the \(x \)-axis.

7) Describe the set of all the points in the \(xy \)-plane which have equal distance to:
 a) the points \((2, 3)\) and \((1, 1)\).
 b) the lines \(x + y = 2 \) and \(2x - y = 0 \).

8) Describe the set of all the points in the \(xyx \)-space which have equal distance to:
 a) the points \((2, 3, 0)\) and \((0, 1, 1)\).
 b) the line \(\vec{r}(t) = (1, 1, 1) + t(-1, 0, 2), t \in \mathbb{R} \) and the plane \(2x - y - z = 1 \).
 c) the planes \(x + y + z = 1 \) and \(x - y - 2z = 1 \).

9) Answer whether the following is true or false, and give a reason / counterexample: Let \(\vec{u}, \vec{v} \) be non-zero vectors in the \(xyz \)-space.
 a) If \(\vec{u} - a\vec{v} \) and \(\vec{u} + a\vec{v} \) have the same length for some number \(a \neq 0 \), then \(\vec{u} \perp \vec{v} \).
 b) If \(|\vec{u} + a\vec{v}| = |\vec{u}| + |a||\vec{v}| \) for some \(a \neq 0 \), then \(a > 0 \) and \(\vec{u} = a\vec{v} \).

 [Hint: What is the length of a vector in terms of dot product?]"
E-mail address: pop@math.upenn.edu
URL: http://math.penn.edu/~pop