
- The axiomatic point of view:
 - All entities are sets.
 - For any sets X, A one has:
 - Either $X \in A$ [read “X belongs to A” or “X is element of A”].
 - Or $X \notin A$ [read “X does not belong to A” or “X is not an element of A”].
 - Notation: $A := \{ X \mid X \in A \}$ [read “A is the set of all (the sets) X such that $X \in A$”].

NOTE: The intuitive or naive point of view that “the sets are all the collections of elements sharing some common property” is **not right**, because it leads to logical contradictions: The collection of all the sets X having the common property $p(X) \equiv (X \notin X)$ **cannot** be a set!

Nevertheless, every set A is the collection of elements X having the (tautological) property $X \in A$. Finally, the collection of all sets is subject to the following system of axioms, called the Zermelo-Fraenkel System of Axioms, for short (ZF), Google it! In particular, from the axioms (ZF) will follow that the collection of all sets is not a set.

Precautionary NOTE: There several ways to present (ZF), in particular the numbering of the axioms as well as the precise content could vary. But as a whole, the resulting systems of axioms are logically equivalent to each other.

AXIOMS & (immediate) CONSEQUENCES/APPLICATIONS (Google it!)

1. **Axiom of extensionality**
 i) The collection \emptyset which has no elements, i.e., $X \notin \emptyset$ for all X, is a set.
 ii) If A, B are sets, then $A = B$ iff they have the same elements, i.e.,

 \[A = B \iff (X \in A \Rightarrow X \in B) \& (X \in B \Rightarrow X \in A). \]

Example 1.1. $\{ \emptyset, A, \#, 1, \emptyset, A, \#, \# \} = \{ 1, A, \emptyset, \# \} = \{ \#, A, 1, \emptyset, 1 \}$.

Definition 1.2. We say that $A \subset B$ [read “A is contained in B” or “A is a subset of A”] if one has:

\[X \in B \Rightarrow X \in A. \]

Ex 1.3. One has $\emptyset \subset A$ for all sets A (why).

2. **Axiom of Specification**
 Given any set A and a property $p(X)$ of the elements $X \in A$ of the set A, one has that

 \[A_{p(X)} := \{ X \in A \mid p(X) \text{ is true} \} \text{ is a set.} \]
Remark 1.4. \(A_p(X) \subset A \) is a subset of \(A \). \(\square \)

Ex 1.5. Let \(A = \{\emptyset, \# , 1, \sqrt{2}, \# , \dagger\} \) and \(p(X) \equiv (X \text{ is a negative number}) \). Then \(A_{p(X)} = \emptyset \).

Ex 1.6. Let \(p(X) \equiv (X \not\in X) \). Then the collection \(\{X \mid p(X)\} \) is not a set. \(\square \)

3. **Axiom of Pairing**

For any sets \(A, B \), the collection \(\{A, B\} \) is a set whose unique elements are \(A, B \).

Consequences

a) For every set \(A \), the collection \(\{A\} \) is a set whose unique element is \(A \). \(\square \)

b) Let \(A, B \) be arbitrary sets. Then the collection \(\{\{A\}, \{A, B\}\} \) is a set whose unique elements are \(X = \{A\}, Y = \{A, B\} \). \(\square \)

Definition 1.7. \((A, B) := \{\{A\}, \{A, B\}\} \) and called the *(ordered)* pair with coordinates \(A, B \).

Ex 1.8. Let \(A, B, A', B' \) be sets. Prove that \((A, B) = (A', B') \) iff \(A = A' \) and \(B = B' \).

4. **Axiom of Normality**

For every set \(A \) there exists \(X \in A \) such that \(A \) and \(X \) have no common elements.

Proposition 1.9. *Every set \(A \) is normal*, i.e., \(A \not\in A \).

Proof. Consider the set \(\{A\} \). Then by the Axiom of Normality, there exists \(X \in \{A\} \) such that \(X \) and \(\{A\} \) have no common elements. OTOH, \(X := A \) is the unique element of \(\{A\} \), hence \(X \) and \(\{A\} \) have no common elements. Hence since \(A \) is the unique element of \(\{A\} \), it follows that \(A \not\in X = A \), i.e., \(A \not\in A \), as claimed. \(\square \)

5. **Axiom of Union**

Let \(\mathcal{F} = \{A \mid A \in \mathcal{F}\} \) be a set. Then the collection \(\{X \mid \exists A \in \mathcal{F} \text{ s.t. } X \in A\} \) is a set, called the *union* of the sets \(A \in \mathcal{F} \). Notation: \(\cup_{A \in \mathcal{F}} A := \{X \mid \exists A \in \mathcal{F} \text{ s.t. } X \in A\} \).

Remark 1.10. Let \(A_1, A_2 \) be sets. Then \(\mathcal{F} := \{A_1, A_2\} \) is a set. Further, one has:

\[
\cup_{A \in \mathcal{F}} A = \{X \mid \exists A \in \{A_1, A_2\} \text{ s.t. } X \in A\} = \{X \mid X \in A_1 \text{ or } X \in A_2\}
\]

Hence \(\cup_{A \in \mathcal{F}} A = A_1 \cup A_2 \) is the usual notion of union of sets.

Ex 1.11. Let \(A, B, C \) and more general, \(A_1, \ldots, A_n \) be finitely many sets. Then \(\{A, B, C\} \), and more generally \(\{A_1, \ldots, A_n\} \) are sets. Hence \(A \cup B \cup C \) and \(\cup_{i=1}^n A_i \) are sets.

Proposition 1.12. Let \(\mathcal{F} = \{A \mid A \in \mathcal{F}\} \) be a set. Then \(\{X \mid \forall A \in \mathcal{F} \text{ one has } X \in A\} \) is a set, called the *intersection* of the sets \(A \in \mathcal{F} \).
Proof. Indeed, consider the following property \(p(X) \equiv (\forall A \in \mathcal{F} \text{ one has } X \in A) \) of the elements of \(\bigcup_{A \in \mathcal{F}} A \). Then by Axiom 2, one has that \(\{ X \in \bigcup_{A \in \mathcal{F}} A \mid p(X) \text{ is true} \} \) is a set. OTOH, this set is precisely the above defined \(\bigcap_{A \in \mathcal{F}} A \).

\[\Box \]

Remark 1.13. Let \(A_1, A_2 \) be sets. Then \(\mathcal{F} := \{ A_1, A_2 \} \) is a set (WHY). Further, one has:

\[\bigcap_{A \in \mathcal{F}} A := \{ X \mid \forall A \in \{ A_1, A_2 \} \text{ one has } X \in A \} = \{ X \mid X \in A_1 \& X \in A_2 \} \]

Hence \(\bigcap_{A \in \mathcal{F}} A = A_1 \cap A_2 \) is the usual notion of intersection of sets.

Ex 1.14. Let \(A, B, C \) and \(A_1, \ldots, A_n \) be sets. Then \(A \cap B \cap C \) and \(\cap_{i=1}^n A_i \) are sets.

Definition 1.15. Let \(A, B \) be sets. Then one has:

a) \(A \setminus B := \{ X \mid X \in A, X \not\in B \} \) is a set (WHY), called the **difference** of the sets \(A \) and \(B \).

b) In particular, the symmetric difference \(A \triangle B := (A \setminus B) \cup (B \setminus A) \) is a set (WHY).

c) Given any subset \(A' \subset A \), the complement \(\complement_A A' := A \setminus A' \) is a set (WHY), subset of \(A \).

Ex 1.16. Show that \(A' \cap (\complement_A A') = \emptyset \) and \(A' \cup (\complement_A A') = A \).

Definition 1.17. For any set \(A \), \(s(A) := A \cup \{ A \} \) is a set (WHY), called the **successor** of \(A \).

Example 1.18. Let \(A = \emptyset \). Then \(s(\emptyset) = \{ \emptyset \} \), \(s(s(\emptyset)) = s(\{ \emptyset \}) = \{ \emptyset, \{ \emptyset \} \} \) (WHY), etc.

Ex 1.19. Let \(A, B \) be sets with \(A \subset B \) and \(s(A) = s(B) \). Show that \(A = B \).

Remark 1.20. Let \(A \) be an arbitrary set. Then one has:

- \(s(A) \) is the unique set satisfying \(A \subset s(A) \), \(A \in s(A) \), and \(s(A) \setminus A \) has one element (WHY).
- \(X_0 := A \subset X_1 := s(X_0) \subset X_2 := s(X_1) \subset X_3 := s(X_2) \subset \ldots \) is a strictly increasing sequence of sets (WHY).

Proof. (first assertion): Since \(s(A) = A \cup \{ A \} \), it follows that \(A \subset s(A) \) and \(A \in s(A) \) (WHY). Since \(A \not\in A \) (WHY), one has \(A \in s(A) \setminus A \) (WHY). Finally, since \(A \) is the unique element of \(\{ A \} \), one has: If \(X \in s(A) \) and \(X \not= A \), then \(X \not\in A \) (WHY). Hence one has: \(s(A) \setminus A \) has precisely one element and that element is \(A \). Conversely, let \(B \) be a set such that \(A \subset B, A \in B \), and \(B \setminus A \) has one element. Since \(A \not\in B \), it follows that \(A \not\in B \setminus A \), hence \(A \) is the unique element of \(B \setminus A \) (WHY). Thus conclude that \(B = A \cup \{ A \} \), as claimed.

Remark 1.21. By the second assertion of the Remark above, and has: Applying any **finite** number of times the successor to \(A := \emptyset \) as above, one can consider \(A_n := \{ X_0, X_1, \ldots, X_n \} \) \([which is a set \text{ (WHY)}]\). The set \(A_n \) satisfies for: For all \(X \in A, X \not= X_n \), one has: \(s(X) \in A_n \). That is, \(A_n \) is “almost” closed with respect to taking successors of its elements; that is, all its element but \(X_n \) have a successor in \(A_n \). On the other hand, from the previous axioms does not follow that there is any set \(A \) such that \(\forall X \in A \text{ one has } s(X) \in A \).

6. **Axiom of Infinity**

There exists a set \(A \) satisfying: \(\emptyset \in A \), and for all \(X \in A \) one has \(s(X) \in A \).

NOTE. By the previous two Remarks above, it follows that \(A \) cannot be finite (WHY).

3
7. **Axiom of the Power Set**

For any set A, the collection of all its subsets $\mathcal{P}(A) := \{A' \mid A' \subset A\}$ is a set, called the power set (or exponent set, or the set of subsets) of A.

Remark 1.22. Let A, B be sets. TFH:
- For every $X \in A$, one has $\{X\} \subset A$, hence $\{X\} \in \mathcal{P}(A)$ (WHY).
- For every $X \in A, Y \in B$, one has $\{X, Y\} \subset A \cup B$, hence $\{X, Y\} \in \mathcal{P}(A \cup B)$ (WHY).
- Finally, $\{\{X\}, \{X, Y\}\} \in \mathcal{P}(\mathcal{P}(A \cup B))$ (WHY).

Proposition 1.23. Let A, B be given sets. Then $A \times B := \{(X, Y) \mid X \in A, Y \in B\}$ is a set, called the (Cartesian) product of the sets A and B.

Proof. By the Remark above, it follows that $(X, Y) \in \mathcal{P}(\mathcal{P}(A \cup B))$ for every $X \in A, Y \in B$. In particular, considering the assertion $p_{A,B}(X, Y) \equiv (X \in A, Y \in B)$ about the elements (X, Y) of $\mathcal{P}(\mathcal{P}(A \cup B))$, one has $A \times B := \{(X, Y) \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid p_{A,B}(X,Y)$ is true}.

Correspondences & Functions/Maps

Definition 1.24. Let A, B be sets.
1) A subset $R \subset A \times B$ is called a correspondence from A to B, or between A and B.
2) A correspondence $R \subset A \times B$ is called functional, if it has the property:

$$\forall x \in A \exists y \in B \text{ s.t. } (x, y) \in R, \text{ and } \forall y' \in B \text{ one has: } (x, y') \in R \Rightarrow y' = y.$$

Definition 1.25. A function, or a map from a set A to a set B is a procedure f which attaches to every $x \in A$ a unique $y \in B$. Notation: $f : A \to B$ [read “f defined on A with values in B”] The unique $y \in B$ attached to $x \in A$ is denoted $y = f(x)$ and called the value of f at x.
- A is called the domain of f, and B is called the codomain of f.
- The identity map of every set A is $\text{id}_A : A \to A$ defined by $\text{id}_A(x) = x$ for all $x \in A$.

Example 1.26. Let $P := \{x \mid x \text{ inhabitant of Earth}\}, E := \{y \mid y \text{ is email address}\}$. Then:

a) $R := \{(x, y) \mid y \text{ is email address of } x\} \subset P \times E$ is a correspondence between P and E. Is R a functional correspondence?

b) $R := \{(x, a) \mid x \in P, a \in \mathbb{R}, \text{ the height of } x \text{ in meters is } a\}$ is a correspondence between P and the real numbers \mathbb{R}. Is R a functional correspondence?

Remark 1.27. We notice the following.
1) Let $R \subset A \times B$ be a functional correspondence. Then R gives rise to a function $f_R : A \to B$ by $f_R(x) = y$, where $y \in B$ is the unique element with $(x, y) \in R$ (WHY).

2) Let $f : A \to B$ be a function. Then f gives rise to correspondence $R_f \subset A \times B$ defined by $(x, y) \in R_f$ iff $y = f(x)$, and R_f is functional (WHY).

3) Finally, the above procedures are inverse to each other, i.e., for f and R as above, one has:

$$f_{R_f} = f \quad R_{f_R} = R$$
Terminology. Given \(f : A \to B \), the correspondence \(R_f \subset A \times B \) is called the graph of \(f \).

Exercise/Definition 1.28. Let \(A, B \) be sets. Then Maps\((A, B) := \{ f \mid f : A \to B \text{ map} \} \) is a set.

[Hint: By the Remark above, Maps\((A, B) \) is the same as \(\{ R \subset A \times B \mid R \text{ functional correspondence} \} \) (WHY). OTOH, the collection of correspondences between \(A \) and \(B \) is, by definition, nothing but \(\mathcal{P}(A \times B) \) (WHY), hence a set (WHY); and the fact that a relation \(R \subset A \times B \) is a functional correspondence is an assertion \(\pi_R(x, y) \) about the elements \((x, y) \in R \) of the set of all correspondences \(\mathcal{P}(A \times B) \) (WHY), etc.]

Exercise/Definition 1.29. Let \(R \subset A \times B, S \subset B \times C \) be correspondences.
1. Prove that \(R^{-1} := \{ (y, x) \in B \times A \mid (x, y) \in R \} \) is a correspondence from \(B \) to \(A \). One calls \(R^{-1} \) the inverse correspondence to \(R \).
2. Prove that \(S \circ R := \{ (x, z) \in A \times C \mid \exists y \in B \text{ s.t. } (x, y) \in R \& (y, z) \in S \} \) is a correspondence form \(A \) to \(C \). One calls \(S \circ R \) the composition of \(R \) with \(S \), or \(S \) after \(R \).

Exercise/Definition 1.30. One has the following.
1. If \(R, S \) are functional, then \(S \circ R \) is functional. Let \(f_{S \circ R} : A \to C \) be the function.

 If \(f : A \to B, g : B \to C \) are functions, their composition \(g \circ f : A \to C \) is the function defined by the rule \((g \circ f)(x) := g(f(x)) \). [This is a function (WHY).]
2. Prove that if \(f = f_R \) and \(g = f_S \) for some functional correspondences \(R \subset A \times B, S \subset B \times C \), then \(g \circ f = f_{R \circ S} \).

Exercise 1.31. Let \(f : A \to B, g : B \to C, h : C \to D \) be maps. Prove the following:
1. The composition of maps is **associative**, i.e., \((f \circ g) \circ h = f \circ (g \circ h)\).
2. \(\text{id}_A \) is **neutral element** for the composition of maps, i.e., \(f \circ \text{id}_A = f \) and \(\text{id}_B \circ f = f \).

Definition 1.32. Let \(f : A \to B \) be a function.
1. \(f \) is called **injective** (or **one-to-one**), if \(\forall x_1, x_2 \in A \) one has: \(f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \).
2. \(f \) is called **surjective** (or **onto**), if \(\forall y \in B \exists x \in A \text{ s.t. } y = f(x) \).
3. \(f \) is called **bijective**, if \(f \) is both injective and surjective.

Exercise 1.33. Let \(f : A \to B \) be bijective. Then \(g : B \to A \) defined by \([g(y) = x \text{ iff } f(x) = y] \) is a well defined function satisfying: \(g(f(x)) = x \) for all \(x \in A \), and \(f(g(y)) = y \) for all \(y \in A \).

Definition 1.34. The map \(g \) above is called the **inverse map** of \(f \), and denoted \(f^{-1} : B \to A \).

Exercise 1.35. Let \(f : A \to B, g : B \to C \) be maps. Prove/answer the following:
1. \(f \) and \(g \) injective \(\Rightarrow g \circ f \) is injective. Does the converse hold?
2. \(f \) and \(g \) surjective \(\Rightarrow g \circ f \) is surjective. Does the converse hold?
3. \(f \) and \(g \) bijective \(\Rightarrow g \circ f \) is bijective, and \((g \circ f)^{-1} = f^{-1} \circ g^{-1} \).

8. **Axiom Schema of Replacement**

Let \(R \subset A \times B \) be a subset. Then \(\text{pr}_B(R) := \{ y \in B \mid \exists x \in A \text{ s.t. } (x, y) \in R \} \) is a set.
Proposition 1.36. Let \(f : A \to B \) be a map. TFH:

1) For every \(A' \subset A \) one has: \(f(A') := \{ f(x) \in B \mid x \in A' \} \subset B \) is a subset, called the image of \(A' \) under \(f \).

2) For every \(B' \subset B \) one has: \(f^{-1}(B') := \{ x \in A \mid f(x) \in B' \} \subset A \) is a subset, called the preimage of \(B' \) under \(f \).

Proof. To 1): Let \(R_f \subset A \times B \) be the graph of \(f \). Then \(R_{A'} := R_f \cap (A' \times B) \) is a set (WHY), and check directly that \(f(A') = \text{pr}_B (R_{A'}) \) (WHY), hence a subset of \(B \). To 2): Ex...

The set of natural numbers \(\mathbb{N} \)

Theorem 1.37. There exists a unique set \(\mathbb{N} \), called the set of natural numbers, having the following properties:

i) \(\emptyset \in \mathbb{N} \) and \(X \in \mathbb{N} \Rightarrow s(X) \in \mathbb{N} \)

ii) For every \(X' \in \mathbb{N} \), \(X' \neq \emptyset \) there exists \(X \in \mathbb{N} \) such that \(X' = s(X) \).

iii) \(\mathbb{N} \) is minimal with the property i) above, i.e., if \(N \subset \mathbb{N} \) is a subset having the property i), i.e., \(\emptyset \in N \) and \(X \in N \Rightarrow s(X) \in N \), then \(N = \mathbb{N} \).

Proof. By the Infinity Axiom, there exist sets \(A \) satisfying:

\[\emptyset \in A \quad \& \quad (X \in A \Rightarrow s(X) \in A) \tag{*} \]

We first prove that every set \(A \) as above contains a unique subset \(A_0 \) which satisfies the conditions i), ii), iii) from the Theorem (with \(\mathbb{N} \) replaced by \(A_0 \)). Indeed, given a set \(A \) as above, consider

\[\mathcal{F} := \{ A' \in \mathcal{P}(A) \mid A' \text{ satisfies condition } (*) \} \]

Since the sets \(A' \in \mathcal{F} \) can be described by a property \(p(A') \) as elements of \(\mathcal{P}(A) \) (WHY), it follows that \(\mathcal{F} \) is a set (of subsets of \(A \)) (WHY). Therefore, one has that

\[A_0 := \cap_{A' \in \mathcal{F}} A' \quad \text{is a subset of } A \quad \text{(WHY)}. \]

We first claim that \(A_0 \) satisfies condition \((*) \) (with \(A \) replaced by \(A_0 \)). Indeed, since all \(A' \in \mathcal{F} \) satisfy \((*) \), one has: First, \(\emptyset \in A' \) for all \(A' \in \mathcal{F} \), hence \(\emptyset \in A_0 \) (WHY). Second, if \(X \in A_0 \), then \(X \in A' \) for all \(A' \in \mathcal{F} \). Thus \(s(A') \in A' \) for all \(A' \in \mathcal{F} \) (WHY), hence \(s(X) \in A_0 \).

Next we claim that \(A_0 \) satisfies the conditions i), ii), iii) from the Theorem (with \(\mathbb{N} \) replaced by \(A_0 \)). Indeed, first, since \(A_0 \) satisfies \((*) \), it follows that \(A_0 \) satisfies conditions i) (WHY). To prove that \(A_0 \) satisfies ii), let \(X' \in A_0 \), \(X' \neq \emptyset \) be an arbitrary element. By contradiction, suppose that for all \(X \in A_0 \) one has \(s(X) \neq X' \). Then setting \(A' := A_0 \setminus \{X'\} \), we claim that \(A'_0 \subset A \) satisfies \((*) \). Indeed, since \(\emptyset \in A_0 \) and \(X' \neq \emptyset \), one has \(\emptyset \in A_0 \setminus \{X'\} = A'_0 \) (WHY). Further, let \(X \in A'_0 \) be given. Then \(s(X) \in A_0 \) (WHY), and since —by the contradiction hypothesis— \(s(X) \neq X' \), it follows that \(s(X) \in A_0 \setminus \{X'\} = A'_0 \) (WHY). To reach a contradiction, we notice that since \(A'_0 \) satisfies \((*) \), it follows that \(A'_0 \in \mathcal{F} \); hence since \(A_0 = \cap A' \in \mathcal{F} \), it follows that \(A_0 \subset A'_0 \) (WHY). OTOH, \(X' \in A_0 \) and \(X' \notin A'_0 \), contradiction! Finally, to prove that \(A_0 \) satisfies condition iii), we notice that if \(N \subset A_0 \) is a subset having property i), then \(N \) satisfies condition \((*) \) (WHY). Hence \(N \in \mathcal{F} \), and therefore \(A_0 \subset N \) (WHY). Thus finally \(A_0 = N \), as claimed.

To prove the uniqueness of \(\mathbb{N} \), let \(A, B \) be sets satisfying condition \((*) \), and let \(A_0 \subset A, B_0 \subset B \) be the corresponding unique subsets constructed as above. We claim that \(A_0 = B_0 \). Indeed, let \(C := A \cup B \). Then \(C \) is a set satisfying condition \((*) \) (WHY), and \(A_0, B_0 \subset C \) satisfy condition \((*) \) as well (WHY); hence if \(C_0 \subset C \) be the unique subset constructed as above for \(C \), one has \(C_0 \subset A_0, B_0 \) (WHY). Hence by property iii) of the sets \(A_0, B_0 \), it follows that \(A_0 = C_0 = B_0 \) (WHY). Thus we conclude that the set \(\mathbb{N} := A_0 \) is the unique set satisfying condition i), ii), iii).

\[\Box \]

Notation. Denote/identify: \(\emptyset \leftrightarrow 0, s(\emptyset) \leftrightarrow 1, s(s(\emptyset)) \leftrightarrow 2, \ldots \text{ thus } \mathbb{N} = \{0, 1, 2, \ldots \}. \]
Remark 1.38. The last condition iii) in Theorem above is called the **Induction Principle**. An interpretation of the Induction Principle is the following important and extremely useful fact:

Theorem 1.39. (Induction Principle) Let a sequence of assertions \(P_n, n \in \mathbb{N} \) be given. To prove that all \(P_n, n \in \mathbb{N} \) are true, it is sufficient to do the following:
- Step 1. Verification step: **Prove that** \(P_0 \) **is true.**
- Step 2. Induction step: **Prove that** \(P_n \Rightarrow P_{s(n)} \) **for all** \(n \).

Proof. Let \(N \subset \mathbb{N} \) be the set of all \(n \in \mathbb{N} \) such that \(P_n \) is true. Then one has: First, \(0 \in N \) (WHY). Second, if \(n \in N \), then \(s(n) \in N \) (WHY). Hence by the property iii) of the natural numbers, one has \(N = \mathbb{N} \). □

Theorem 1.40. (Weak Induction Principle) Let a sequence of assertions \(Q_n, n \in \mathbb{N} \) be given. To prove that all the \(Q_n, n \in \mathbb{N} \) are true, it is sufficient to do the following:
- Step 1. Verification step: **Prove that** \(Q_0 \) **is true.**
- Step 2. Induction step: **Prove that** \((Q_0 \& \ldots \& Q_n) \Rightarrow Q_{s(n)} \) **for all** \(n \).

Proof. Let \(P_n \equiv (Q_0 \& \ldots \& Q_n) \). We notice that the assertions below are equivalent:
- i) \(P_n \Rightarrow P_{s(n)} \) for all \(n \in \mathbb{N} \)
- ii) \((Q_0 \& \ldots \& Q_n) \Rightarrow Q_{s(n)} \) for all \(n \in \mathbb{N} \).

Indeed: First suppose that i) is true, or equivalently one has:
\[
(Q_0 \& \ldots \& Q_n) \equiv P_n \Rightarrow P_{s(n)} \equiv (Q_0 \& \ldots \& Q_n \& Q_{s(n)}), \quad \forall n \in \mathbb{N}.
\]

The LHS is true iff \(Q_k \) is true for \(0 \leq k \leq n \) (WHY), whereas the RHS is true iff \(Q_k \) is true for \(0 \leq k \leq s(n) \) (WHY). Hence the displayed implication is true iff \((Q_0 \& \ldots \& Q_n) \Rightarrow Q_{s(n)} \) (WHY). Second, suppose that ii) is true. Then by the discussion above, one has that \((Q_0 \& \ldots \& Q_n) \Rightarrow (Q_0 \& \ldots \& Q_n \& Q_{s(n)}) \) is true (WHY), hence concluding that \(P_n \Rightarrow P_{s(n)} \) is true.

To conclude the proof, we apply the Induction Principle to the sequence of assertions \(P_n, n \in \mathbb{N} \), as follows: First, \(P_0 \equiv Q_0 \). Second, by the claim above, \(P_n \Rightarrow P_{s(n)} \) iff \((Q_0 \& \ldots \& Q_n) \Rightarrow Q_{s(n)} \), etc. □

The most important application of the (Weak) Induction Principle are **proofs by induction**.

Cardinality of sets

One has the following famous fact, called the Cantor-Bernstien-Schroeder Theorem:

Theorem 1.41. Let \(A, B \) be sets such that there exist injective maps \(f : A \to B \) and \(g : B \to A \). Then there exist bijective maps \(\phi : A \to B \) as well.

Proof. Google it! □

Definition 1.42. Let \(A, B \) be sets.
- a) We say that \(|A| \leq |B| \) [read "cardinality of \(A \) is less or equal to the cardinality of \(B \)"], if there exists an injective map \(f : A \to B \).
- b) We say that \(|A| < |B| \) [read "cardinality of \(A \) is less than the cardinality of \(B \)"], if there are no injective maps \(f : B \to A \).

Definition 1.43. Let \(n \in \mathbb{N} \) be a natural number, \(n \neq 0 \). The **typical set with \(n \) elements** is the unique subset \([n] \subset \mathbb{N}\) satisfying: \(0 \notin [n], 1 \in [n] \) and \((m \in [n], m \neq n) \Rightarrow s(m) \in [n] \).
- A set A is finite and has n elements, if there is a bijection $\phi : [n] \to A$.
- A set A is called infinite, if there are injective maps $\phi : [n] \to A$ for all $n \in \mathbb{N}$.

Remark 1.44. Intuitively, the set $[n]$ is the set of the first n natural numbers $\neq 0$. In particular, one has: $[1] = \{1\}$, $[2] = \{1, 2\}$, $[3] = \{1, 2, 3\}$, $[4] = \{1, 2, 3, 4\}$, etc.

Concerning typical finite sets, the hollowing holds:

Proposition 1.45. Every injective or surjective map $f : [n] \to [n]$ is bijective.

Proof. We make induction on n: The case $n = 1$ is clear, because $[1] = \{1\}$ and every map $f : \{1\} \to \{1\}$ is bijective. We prove the induction step: Suppose that every injective map $f : [n] \to [n]$ is bijective. Then we prove that every injective map $g : [s(n)] \to [s(n)]$ is bijective. Indeed, let $m := g(n)$, and define $h : [s(n)] \to [s(n)]$ by $h(m) = s(n)$, $h(s(n)) = m$ and $h(i) = i$ for $i \neq m, s(n)$. Then h is injective. Hence $g_0 := h \circ g : [s(n)] \to [s(n)]$ is injective. OTOH, $g_0(s(n)) = h(g(s(n))) = h(m) = s(n)$ by $f_0 : [n] \to [n]$ by $f_0(i) = g_0(i)$ is an injective map. Hence by the induction hypothesis, f_0 is injective. Thus $g_0 : [s(n)] \to [s(n)]$ is bijective. Finally, since $g_0 = h \circ g$, and h is injective, hence so is its inverse map h^{-1} and $id = h^{-1} \circ h$, we get:

$$g = id \circ g = (h^{-1} \circ h) \circ g = h^{-1} \circ (h \circ g) = h^{-1} \circ g_0$$

and therefore, g is bijective as being the composition of the bijective maps g_0 and h^{-1}.

Finally, the “f is surjective” case is left as an exercise.

Concerning infinite sets, the hollowing holds:

Proposition 1.46. A is infinite iff $|\mathbb{N}| < |A|$, i.e., there exists an injective map $f : \mathbb{N} \to A$.

Proof. The implication “\Leftarrow” is proved as follows: Let $\phi : \mathbb{N} \to A$ be an injective map. For every $n \in \mathbb{N}$, consider the map $\phi_n : [n] \to A$ by $\phi_n(m) := \phi(m)$ for all $m \in [n]$. NOTE: Actually $\phi_n := \phi|[n]$ is the restriction of ϕ to $[n]$. Then $\phi_n : [n] \to A$ is injective for every $n \in \mathbb{N}$.

The implication “\Rightarrow” is little bit more tricky. Let $\phi_n : [n] \to A$ be given injective maps for every $n \in \mathbb{N}$, $n \neq 0$, and let \mathcal{P}_n be the assertion:

$$\mathcal{P}_n \equiv \left(\exists \psi_n : [n] \to A \text{ injective s.t. } \psi_n(i) = \psi_m(i) \forall m \in [n] \text{ and } i \in [m] \right)$$

[In plain English, that means that the restriction of ψ_n to $[m] = \{1, \ldots, m\}$ equals ψ_m for all $m \in \{1, \ldots, n\}$.]

We prove by induction that all assertions \mathcal{P}_n are true.

Step 1: Verification step: \mathcal{P}_1 is true. Indeed, there is nothing to prove.

Step 2: Induction step: $\mathcal{P}_n \Rightarrow \mathcal{P}_{s(n)}$. We begin by proving the following:

Claim. There exists $m \in [s(n)]$ such that $\phi_{s(n)}(m) \neq \psi_i(i) \forall i \in [n]$.

Proof. (of the Claim) Indeed, by contradiction, suppose that the Claim does not hold. Then one must have:

$$A_{s(n)} := \phi_{s(n)}([s(n)]) \subset \psi_n([n]) =: B_n$$

By definition one has: $\psi_n : [n] \to B_n$ is both injective and surjective, hence bijective. In the same way, $\phi_{s(n)} : [s(n)] \to A_{s(n)}$ is bijective as well. Hence ψ_n and $\phi_{s(n)}$ being bijective, we conclude that $f : [s(n)] \xrightarrow{\phi_{s(n)}} A_{s(n)} \subset B_n \xrightarrow{\psi_n^{-1}} [n] \subset [s(n)]$ is an injective map. Thus by Proposition 1.45 above, it follows that f is actually bijective. On the other hand, since the canonical inclusion $[n] \subset [s(n)]$ is not surjective, it follows that f cannot be surjective, thus not bijective, contradiction! Thus the Claim holds.
Let \(s(n) = \{ i \in [n] \} \). We conclude the proof by defining \(\psi_{s(n)} : [s(n)] \to A \) as follows: \(\psi_{s(n)}(i) = \psi_n(i) \) for all \(i \in [n] \). Then \(\psi_{s(n)} \) is injective (why), and \(\psi_{s(n)}(i) = \psi_n(i) \) for all \(i \in [n] \).

To conclude the proof of the Proposition, recall that \(B_n := \{ \psi_n(i) \mid i \in [n] \} \), consider the set \(\{ B_n \}_{n \in \mathbb{N}} \) of (finite) subsets of \(A \), and set \(B := \bigcup_{n \in \mathbb{N}} B_n \). Then one can define \(\psi : \mathbb{N} \to B \subset A \) by \(\psi(n) = \psi_{s(n)}(s(n)) \); e.g., \(\psi(0) = \psi_1(1), \psi(1) = \psi_2(2), \psi(2) = \psi_3(3), \) etc. Check that \(\psi \) is injective (why).

Remark 1.47. One has the following intrinsic characterization of finite sets:

Theorem 1.48. For a non-empty set \(A \) the following are equivalent:

i) \(A \) is a finite set.

ii) Every injective map \(f : A \to A \) is bijective.

iii) Every surjective map \(f : A \to A \) is bijective.

Proof. We first show that the last two conditions are equivalent: iii) \(\Rightarrow \) ii): Let \(f : A \to A \) be a surjective map. Equivalently, for every \(y \in A \), there exists \(x \in A \) s.t. \(y = f(x) \). For every \(y \), let \(x_y \in A \) be a fixed element s.t. \((x_y) = y \). For every \(y \), let \(x_y \in A \) be a fixed element s.t. \(y = f(x_y) \). Notice that \(y_1 \neq y_2 \Rightarrow x_{y_1} \neq x_{y_2} \). Define \(g : A \to A \) by \(g(y) = x_y \). Then \(g \) is a well defined function (why), and we claim that \(g \) is injective: Indeed, \(g(y_1) = g(y_2) \) iff \(x_{y_1} = x_{y_2} \) iff \(y_1 = f(x_{y_1}) = f(x_{y_2}) = y_2 \) (why). Hence by hypothesis ii), since \(g \) is injective, one has that \(g \) is injective. Hence every \(e \in A \) of the form \(e = x_y \) for a unique \(y \) satisfying \(f(x) = y \). Therefore, \(f \) must be bijective as well. The proof of ii) \(\Rightarrow \) iii) is similar.

To i) \(\Rightarrow \) ii): Let \(\phi : A \to [n] \) be a fixed bijection, and \(\phi^{-1} : [n] \to A \) be its inverse map. For any map \(f : A \to A \), set \(g := \phi^{-1} \circ f \circ \phi : [n] \to [n] \); hence \(f = \phi \circ g \circ \phi^{-1} \) as well (why). Since \(\phi, \phi^{-1} \) are bijections, one has: If \(f \) is a bijection, then \(g \) is a bijection (why). Conversely, if \(g \) is a bijection, then \(f \) is a bijection (why). Hence it is enough to show (why): Every injective map \(g : [n] \to [n] \) is bijective. This was proved in Proposition 1.44 above.

To ii) \(\Rightarrow \) i): By contradiction, suppose that \(A \) is infinite. Let \(\psi : \mathbb{N} \to A \) be an injective map. Define \(f : A \to A \) as follows: If \(x = \psi(n) \), then set \(f(x) = \psi(s(n)) \), and if \(x \neq \psi(n) \) for all \(n \in \mathbb{N} \), then set \(f(x) = x \). Then \(f(x) \neq f(x) \) for all \(x \in A \); hence \(f \) is not surjective. Further, \(f \) is injective (why). Thus finally \(f \) injective but not bijective, contradiction!

Relations

Definition/Remark 1.49. A relation on a set \(A \) is any correspondence \(R \subset A \times A \). In particular, the collection of all the relations on \(A \) is nothing but \(\mathcal{P}(A \times A) \) (why).

Example 1.50. Three basic relations of any set \(A \) are: (i) The empty relation \(\emptyset \subset A \times A \); (ii) The diagonal \(\Delta_A := \{(x, x) \mid x \in A\} \); (iii) The total relation \(A \times A \).

Example 1.51. Let \(P := \{ x \mid x \text{ person living in Phila.} \} \). Then \(R := \{(x, y) \mid x \text{ is relative of } y\} \) is a relation on \(P \).

Equivalence relations

Definition 1.52. Let \(A \) be a non-empty set.

1) An equivalence relation on \(A \) is any relation on \(A \), usually denoted \(\sim \), satisfying:

i) \(\sim \) is reflexive, i.e., \(x \sim x \) for all \(x \in A \).

ii) \(\sim \) is symmetric, i.e., \(x \sim y \Rightarrow y \sim x \).

iii) \(\sim \) is transitive, i.e., \((x \sim y \& y \sim z) \Rightarrow x \sim z \).
2) For \(x \in A \), the collection \(\hat{x} := \{ x' \in A \mid x \sim x' \} \) is a subset of \(A \) \(\text{(WHY)} \), which is called the equivalence class of \(x \).

Example 1.53. Let \(A \) be a non-empty set. Then one has:

a) The diagonal \(\Delta_A := \{(x, x) \mid x \in A\} \subset A \times A \) is an equivalence relation, and its equivalence classes are \(\hat{x} = \{x\} \) for all \(x \in A \) \(\text{(WHY)} \).

b) The total relation \(A \times A \) on \(A \) is an equivalence relation on \(A \), which has a unique equivalence class \(\hat{x} = A \) \(\text{(WHY)} \).

c) Let \(P \) be the set of people. Which relation \(R \) below on \(P \) is an equivalence relation?

- \(xRy \) is the relation “\(x \) is a friend of \(y \).”
- \(xRy \) is the relation “\(x \) and \(y \) like the same foods.”
- \(xRy \) is the relation “\(x \) and \(y \) have the same friends on Facebook.”

d) \(A \) is the set of rational numbers, and define \(R \) on \(A \) by: \(xRy \iff x - y \) is an integer number. Is \(R \) an equivalence relation on \(A \)? If so, what are the equivalence classes?

Definition 1.54. A partition of a set \(A \) is a set of non-empty subsets \(A_i \subset A \), \(i \in I \) such that \(A = \bigcup_{i \in I} A_i \), and for all \(A_i, A_j \) one has: \(A_i \cap A_j \neq \emptyset \Rightarrow A_i = A_j \).

Example 1.55. Let \(A = \{0, 1, \ldots, 100\} \), \(A_0, A_1, A_2 \subset A \) be the even, resp. odd, resp. the square numbers. Then \(\{A_0, A_1\} \) is a partition of \(A \), but \(\{A_1, A_2\}, \{A_0, A_1, A_2\} \) are not \(\text{(WHY)} \).

Proposition 1.56. Let \(A \) be a non-empty set. TFH:

1) The equivalence classes \(\hat{x} \) are actually subsets \(\hat{x} \subset A \), and \(\{ \hat{x} \mid x \in X \} \) is a subset of \(\mathcal{P}(A) \), called the set of equivalence classes of \(\sim \) and usually denoted \(A/\sim \).

2) Characterization of Equivalence Relations:

i) For \(x, y \in A \) one has: \(\hat{x} \cap \hat{y} \neq \emptyset \iff \hat{x} = \hat{y} \). In particular, the set of equivalence classes \(A/\sim \) is a partition of \(A \).

ii) Conversely, let \(A = \bigcup_{i \in I} A_i \) be a partition of \(A \), and define \(\sim \) on \(A \) by \(x \sim y \iff \exists i \in I \) s.t. \(x, y \in A_i \). Then \(\sim \) is an equivalence relation having \(\hat{x} = A_i \iff x \in A_i \).

Proof: To 1): Let \(R \subset A \times A \) be the equivalence relation \(\sim \) on \(A \), and \(\text{pr}_1 : R \to A \) by \(\text{pr}_1(x, y) = x \) and \(\text{pr}_2 : R \to A \) by \(\text{pr}_2(x, y) = y \) be the projection on the first, respectively second coordinate. Then one has that \(\text{pr}_1^{-1}(x) = \{(x, x') \mid x \sim x'\} \) for every \(x \in A \) \(\text{(WHY)} \), hence a subset of \(R \) \(\text{(WHY)} \). OTOH, \(\text{pr}_2 = \text{pr}_2(\{(x, x') \mid x \sim x'\}) \) \(\text{(WHY)} \), and therefore, \(\hat{x} \subset A \) is a subset \(\text{(WHY)} \). Further, \(A/\sim \) is a collection of subsets \(\hat{x} \) of the power set \(\mathcal{P}(A \times A) \) such the subsets \(\hat{x} \) can be defined by an assertion \(p_\sim(X) \) about the elements \(X \in \mathcal{P}(A \times A) \) \(\text{(WHY)} \). [Ex: Write down explicitly the assertion \(p_\sim(X) \) describing the equivalence classes \(\hat{x} \) as elements \(\hat{x} \in \mathcal{P}(A) \).] We thus conclude that \(X/\sim \) is a set, subset of \(\mathcal{P}(A \times A) \) \(\text{(WHY)} \).

To 2) i): Given \(\hat{x} \cap \hat{y} \neq \emptyset \), we show that \(\hat{x} = \hat{y} \). Indeed, if \(z \in \hat{x} \cap \hat{y} \), then \(x \sim z \) and \(y \sim z \). Hence \(x \sim y \) \(\text{(WHY)} \). Therefore one has: \(x' \in \hat{x} \iff x \sim x' \) iff \(x' \sim y \) \(\text{(WHY)} \). Thus \(\hat{x} = \hat{y} \), as claimed. Hence we conclude that \(\{ \hat{x} \mid x \in A \} \) is indeed a partition of \(A \) \(\text{(WHY)} \).

To 2) ii): Ex . . .

Order relations or (partial) Ordering

Definition 1.57. An order relation or a (partial) ordering on a set \(A \) is any relation on \(A \), usually denoted \(\leq \) \(\text{[read "less or equal to"]} \), which has the properties:
Example 1.59. Define the following hold:

i) \leq is reflexive, i.e., $x \leq x$ for all $x \in A$.

ii) \leq is antisymmetric, i.e., $(x \leq y \& y \leq x) \Rightarrow x = y$.

iii) \leq is transitive, i.e., $(x \leq y \& y \leq z) \Rightarrow x \leq z$.

Notation. If $x \leq y$ and $x \neq y$, we write $x < y$ [read "x strictly less than y"]. Further, in stead of $x \leq y$ and/or $x < y$, one also writes $y \geq x$ [read "y greater or equal to x"], respectively $y > x$ [read "y strictly greater than x"]. Hence one has: $x \leq y \iff y \geq x$, respectively $x < y \iff y > x$.

Definition 1.58. Let \leq be an ordering on A, and $B \subset A$ be a non-empty subset.

a) An element $y_B \in B$, if it exists, is called a minimum of B, if $y_B \leq y \\forall y \in B$.

Define correspondingly a maximum $y^B \in B$ of B, provided it exists.

Notations: $\min(B)$, respectively $\max(B)$.

b) An element $x_B \in A$, if it exists, is called an infimum of B, if it satisfies: First, $x_B \leq y$ for all $y \in B$; second, if $x \in A$ is such that $x \leq y$ for all $y \in B$, then $x \leq x_B$.

Define correspondingly a supremum $x^B \in A$ of B, provided it exists.

Notations: $\inf(B)$, respectively $\sup(B)$.

Example 1.59. Define \leq on $\mathcal{P}(A)$ by $A' \leq A'' \iff A' \subset A''$. Then one has:

a) \leq is a partial ordering on $\mathcal{P}(A)$ [WHY], and $\min\left(\mathcal{P}(A)\right) = \emptyset$, $\max\left(\mathcal{P}(A)\right) = A$ [WHY].

Further, if $\mathcal{F} \subset \mathcal{P}(A)$ is non-empty, then $\sup(\mathcal{F}) = \bigcup_{A' \in \mathcal{F}} A'$, $\inf(\mathcal{F}) = \bigcap_{A' \in \mathcal{F}} A'$ [WHY].

b) Let $A' := (0, 1] \subset [-1, 2] := A$ endowed with the ordering of real numbers. Then $\min(A')$ does not exist [WHY], $\inf(A') = 0$ [WHY], and $\max(A') = 1 = \sup(A')$ [WHY].

Ex 1.60. In the above notations, prove/answer the following:

1) If $\min(B)$ exists, then that minimum is unique, i.e., if y'_B, y''_B are minima of B, then $y'_B = y''_B$. Correspondingly, the same holds for maximum.

2) If $\inf(B)$ exists, then that infimum is unique, i.e., if x'_B, x''_B are infima of B, then $x'_B = x''_B$. Correspondingly, the same holds for supremum.

Ex 1.61. Prove/disprove the following:

1) If $\min(B)$ exists, then $\inf(B)$ exists, and $\inf(B) = \min(B)$. Does the converse hold?

The same question, correspondingly, for $\max(B)$ and $\sup(B)$.

2) Give examples $\inf(B)$ exists, but $\min(B)$ does not.

Definition 1.62. Let \leq be an ordering of a non-empty set A.

1) \leq is called total ordering, if for all $x, y \in A$ one has that $x \leq y$ or $y \leq x$.

2) \leq is called a well ordering, if $\min(A')$ exists for every non-empty subset $A' \subset A$.

Example 1.63. The following hold:

a) The set of real numbers \mathbb{R} is totally ordered w.r.t the natural ordering \leq.

b) Every well ordered set A is totally ordered [WHY], but the converse does not hold [WHY].

c) Every totally ordered finite set is well ordered.
9. **Axiom of Choice**
For every non-empty set \(A \), one can choose an element \(X \in A \).

Remark 1.64. The above Axiom of Choice is not part of the Zermelo-Fraenkel System of Axioms (ZF), which consists of the above first 8 (eight) axioms above. The (ZF) together with the Axiom of Choice is denoted (ZFC). On the other hand, it turns out that there are several equivalent formulations of (ZFC), e.g. one has:

Theorem 1.65. The following systems of axioms for sets are equivalent:

i) (ZF) \& Axiom of Choice

ii) (ZF) \& Zorn’s Lemma: All (partially) ordered sets \(A, \leq \) satisfy: If every non-empty totally ordered subset \(A', \leq \) of \(A, \leq \) has \(\sup(A') \) in \(A \), then \(\max(A) \) exists.

iii) (ZF) \& Well ordering Axiom: Every non-empty set \(A \) admits a well ordering.

Proof. Google it! \(\square \)

2. **Arithmetic and properties of \(\mathbb{N} \)**

I) **Addition and Multiplication in \(\mathbb{N} \)**

Define on \(\mathbb{N} \) the following **addition** and **multiplication**, in one word, **composition laws**:

- **addition** + for \(n \in \mathbb{N} \) by: \(n + 0 := n \), and recursively, \(n + s(m) := s(n + m) \ \forall \ m \in \mathbb{N} \)
- **multiplication** \(\cdot \) for \(n \in \mathbb{N} \) by: \(n \cdot 0 := 0 \), and recursively, \(n \cdot s(m) := n \cdot m + n \ \forall \ m \in \mathbb{N} \).

NOTE: + and \(\cdot \) are by no means symmetric in the arguments, therefore rigorous proofs are needed to show that + and \(\cdot \) have the necessary basic properties for computations.

Theorem 2.1. The addition + and the multiplication \(\cdot \) on \(\mathbb{N} \) have the following properties:

1) **Addition + satisfies:**
 - **associativity**, i.e., \((k + m) + n = k + (m + n) \ \forall \ k, m, n \in \mathbb{N} \).
 - **commutativity**, i.e., \(m + n = n + m \ \forall \ m, n \in \mathbb{N} \).
 - \(0 \in \mathbb{N} \) is **neutral element**, i.e., \(n + 0 = n = 0 + n \ \forall \ n \in \mathbb{N} \).

2) **Multiplication \(\cdot \) satisfies:**
 - **associativity**, i.e., \((k \cdot m) \cdot n = k \cdot (m \cdot n) \ \forall \ k, m, n \in \mathbb{N} \).
 - **commutativity**, i.e., \(m \cdot n = n \cdot m \ \forall \ m, n \in \mathbb{N} \).
 - \(1 \in \mathbb{N} \) is **neutral element**, i.e., \(n \cdot 1 = n = 1 \cdot n \ \forall \ n \in \mathbb{N} \).

3) **Multiplication is distributive w.r.t. addition**, i.e.,
 \[k \cdot (m + n) = k \cdot m + k \cdot n \ \text{and} \ (m + n) \cdot k = m \cdot k + n \cdot k \ \forall \ k, m, n \in \mathbb{N} \]

Proof. To 1): Associativity, by induction on \(n \): Step 1. \(\mathcal{P}_0 \): \((k + m) + 0 = k + m = k + (m + 0) \), done! (WHY).

Step 2. \(\mathcal{P}_n \Rightarrow \mathcal{P}_{s(n)} \): Recall that \(\mathcal{P}_{s(n)} \equiv (k + m) + s(n) = k + (m + s(n)) \). One has:
\[(k + m) + s(n) = k + s(m + n) \]

Commutativity, by induction on \(n \): Step 1. \(\mathcal{P}_0 \): \(m + 0 = 0 + m \) if \(m = 0 + m \forall m \). That is proved by induction on \(m \). \(\mathbf{Ex} \ldots \) One also has to prove that \(\mathcal{P}_1 : m + 1 = 1 + m \) is true for all \(m \in \mathbb{N} \) hods \(\mathbf{Ex} \ldots \) (HOW).

Step 2. \(\mathcal{P}_n \Rightarrow \mathcal{P}_{s(n)} \): Recalling that \(\mathcal{P}_{s(n)} \equiv (m + s(n) = s(n) + m \forall m \in \mathbb{N}) \), one has:

\[m + s(n) = m + (n + 1) = (m + n) + 1 \]

To 3): Induction on \(k \): Step 1. \(\mathcal{P}_0 : (m + n) \cdot 0 = m \cdot 0 + n \cdot 0 \) (WHY). Step 2. \(\mathcal{P}_k \Rightarrow \mathcal{P}_{s(k)} \): One has

\[(m + n) \cdot s(k) = (m + n) \cdot k = (m + n) \cdot k + m + n \]

To 2): Make induction on \(n \), using assertions 1), 3).

\[\square \]

II) The natural ordering \(\leq \) on \(\mathbb{N} \)

Define on \(\mathbb{N} \) the relation: \(m < n \overset{\text{def}}{\iff} \exists l \in \mathbb{N} \text{s.t. } m + l = n. \)

Theorem 2.2. The relation \(\leq \) on \(\mathbb{N} \) is an ordering satisfying the following:

1) \(\leq \) is compatible w.r.t. both addition and multiplication, i.e., \(\forall k, m, n \in \mathbb{N} \text{ one has:} \)

\[m < n \Rightarrow m + k < n + k, \ m \cdot k < n \cdot k. \]

2) The ordering \(\leq \) is a total ordering, and moreover, a well ordering of \(\mathbb{N} \).

Proof. To 1: Induction on \(k \): Step 1. \(\mathcal{P}_0 : m \leq n \Rightarrow m + 0 = m \leq n + 0 \) are obvious (WHY).

Step 2. \(\mathcal{P}_k \Rightarrow \mathcal{P}_{s(k)} \): Since \(m \leq n \), one has \(m + l = n \) for some \(l \in \mathbb{N} \) (WHY). Hence one has:

\[m + l = n \Rightarrow m + l + k = n + k \Rightarrow s(m + l + k) = s(n + k) \Rightarrow (m + l + s(k) = n + s(k) \Rightarrow (m + s(k)) + l = n + s(k), \]

thus \(m + s(k) \leq n + s(k) \). Similarly, \(m + l = n \Rightarrow (m + l) \cdot k = n \cdot k \), hence \((m + l) \cdot k + (m + k) = n \cdot k + n \) (WHY). Equivalently, \((m + l) \cdot s(k) = n \cdot s(k) \) (WHY). On the other hand, setting \(l' := l \cdot s(k) \), one has:

\[(m + l) \cdot s(k) = n \cdot s(k) \Rightarrow m \cdot s(k) + l \cdot s(k) = m \cdot s(k) + l' = n \cdot s(k), \text{ hence } m \cdot s(k) \leq n \cdot s(k) \] (WHY).

To 2): The assertions \(\mathcal{P}_n \equiv (\forall m \in \mathbb{N}, \text{ one has } m \leq n \text{ or } n \leq m) \) are true for all \(n \in \mathbb{N} \). Indeed: \(\mathcal{P}_0 \) is true (WHY), Step 2. \(\mathcal{P}_n \Rightarrow \mathcal{P}_{s(n)} \): First, if \(m \leq n \), then \(m \leq s(n) \) (WHY). Hence it is left to analyze the case \(n \leq m, n \neq m \). If so, \(n + l' = m \) with \(l' \neq 0 \) (WHY), thus \(l' = s(l'') \) for some \(l'' \in \mathbb{N} \) (WHY). Hence one has:

\[m = n + l' \Rightarrow n + s(l'') = n + s(l') = n + s(l' + n) = l'' + s(n) = s(n + l''), \text{ and finally, } s(n) \leq m \] (WHY).

Finally, \(\leq \) is a well ordering: Indeed, let \(N \subset \mathbb{N} \) be a non-empty set. Choose any \(n \in N \), and do: If \(n = 0 \), then \(0 = \min(\mathbb{N}) \) is a minimal element of \(N \) (WHY). If \(n
eq 0 \), then \(|n| \) is a finite totally ordered set, hence a well ordered set (WHY). Therefore, \([n] \cap N \) is non-empty (because \(n \in [n] \)), and has a minimal element \(n_0 \). Conclude that \(n_0 \in N \) satisfies \(n_0 = \min(N) \) (WHY).

\[\square \]

Proposition 2.3. The addition \(+\), the multiplication \(\cdot\) and the ordering \(\leq\) on \(\mathbb{N}\) have the cancellation property, i.e., for all \(k, m, n \in \mathbb{N} \) the following hold:

1) \(n + k = m + k \iff n = m \).

2) \(n \cdot k = m \cdot k \iff n = m \), provided \(k \neq 0 \).

3) \(m + k \leq n + k \iff m \leq n \).

4) \(m \cdot k \leq n \cdot k \iff m \leq n \), provided \(k \neq 0 \).
Proof. To 1): Induction on \(k \): First, the assertion is clear for \(k = 0 \) \((\text{WHY})\). Second, one has: \(n + s(k) = m + s(k) \)
iff \(s(n + k) = s(m + k) \) \((\text{WHY})\) iff \(n + k = m + k \) \((\text{WHY})\), etc. To 2): Clearly, \(n = m \Rightarrow h \cdot k = m \cdot k \) \((\text{WHY})\). For the converse, let \(n \cdot k = m \cdot k \) be given. By contradiction, suppose that \(m \neq n \), and w.l.o.g. suppose that \(m < n \). Hence by definitions, there exists \(l > 0 \) such that \(m + l = n \). Therefore we have
\[
m \cdot k = n \cdot k = (m + l) \cdot k = m \cdot k + l \cdot k,
\]
thus we get \(0 = l \cdot k \) \((\text{WHY})\). Since \(k, l \neq 0 \), one has \(l \cdot k \neq 0 \) \((\text{WHY})\), contradiction! To 3) & 4): \textbf{Ex} \ldots \square

III) Arithmetic in \(\mathbb{N} \)

\textbf{Definition 2.4.} Let \(m, n, p \in \mathbb{N} \) be natural numbers \(\mathbb{N} \).

1) Divisibility. We say that \(m \) divides \(n \), or that \(m \) is a divisor of \(n \), if \(n = m \cdot k \) for some \(k \in \mathbb{N} \). Notation: \(m \mid n \).

2) The lowest common multiple \(\text{lcm}(m, n) \) of \(m, n \) is the smallest natural number having \(m, n \) as divisors. The greatest common divisor \(\text{gcd}(m, n) \) is the largest number dividing \(m, n \). One says that \(m, n \) are coprime, if \(\text{gcd}(m, n) = 1 \).

3) Prime numbers. A natural number \(p \in \mathbb{N} \) is called prime number, if \(p > 1 \) and the only divisors of \(p \) are 1 and \(p \).

\textbf{Proposition 2.5.} In the set of natural numbers \(\mathbb{N} \), the following hold:

1) The divisibility relation \(m \mid n \) is a partial ordering on \(\mathbb{N} \), and 1 is the only minimal element. Further the prime numbers are the minimal elements in the set \(\mathbb{N}_{>1} := \{ n \mid n \neq 0, 1 \} \).

2) Divisibility is compatible with addition, precisely, if \(l + m = n \) and \(k \) divides two of the numbers \(l, m, n \), then \(k \) divides all numbers \(l, m, n \).

3) Every natural number \(n > 1 \) is a product of prime numbers.

\textbf{Proof.} To 1), 2): \textbf{Ex} \ldots \text{(just use the definitions!)} To 3): Make induction on \(n \), and use the Induction Principle Thm in the form: All \(\{P_n\}_{n \in \mathbb{N}} \) are true, provided (i) \(P_0 \) is true & (ii) \((P_0, \ldots, P_n) \Rightarrow P_{s(n)} \). \square

\textbf{Theorem 2.6.} The following hold:

1) Division with remainder. For every \(m, n \in \mathbb{N}, m \neq 0 \), there exist unique \(q, r \in \mathbb{N} \) such that \(n = m \cdot q + r \), \(0 \leq r < m \). \textbf{Terminology.} The numbers \(q, r \in \mathbb{N} \) are called the result, respectively the remainder of the division of \(n \) by \(m \) with remainder.

2) Euclidean Algorithm. Suppose that \(m \neq 0 \), and set \(r_0 := n, r_1 := m, \) and inductively, let \(r_{i-1} = q_i \cdot r_i + r_{i+1} \) be the division of \(r_{i-1} \) by \(r_i \) with remainder \(r_{i+1} \). Then \(r_{i+1} = 0 \) for sufficiently large \(i \). And if \(r_i \neq 0 \) and \(r_{i+1} = 0 \), then \(r_i = \text{gcd}(n, m) \).

3) Uniqueness of prime number factorization. For every \(n \in \mathbb{N}, n \neq 0, 1 \), there exist unique \(s \) and unique prime numbers \(p_1 \leq \ldots \leq p_s \) such that \(n = p_1 \ldots p_s \).

\textbf{Proof.} To 1): \textbf{Ex} (make induction on \(m \ldots \)) To 2): Wet set \(d := \text{gcd}(m, n) \), and claim that \(d \mid r_{k+1} \) for all \(k \in \mathbb{N} \). Indeed, by induction on \(k \), one has: Since \(d \mid m, d \mid n \), one has (by definitions) that \(d \mid r_0, d \mid r_1 \). Hence by Proposition above, \(d \mid r_2 \). Induction step: If \(d \mid r_{k-1}, d \mid r_k \), by loc.cit. one has: \(d \mid r_{k+1} \) \((\text{WHY})\). In particular, if \(i \in \mathbb{N} \) is such that \(r_i \neq 0 \) and \(r_{i+1} = 0 \), then \(d \mid r_i \). Conversely, suppose that \(r_i \neq 0 \) and \(r_{i+1} = 0 \) for some \(i \in \mathbb{N} \). We claim that \(d \mid r_i \). Indeed, let \(P_k \) be the assertion: \(P_k \equiv r_i \mid r_{i-k}, k = 0, \ldots, i \). \textbf{Ex} (prove by induction on \(k \), that the assertion \(P_k, k = 0, \ldots, i \) are true. Namely, \(P_0 \equiv (r_i \mid r_i) \) is clear. For \(P_1 \), note that \(r_{i-1} = q_r r_i + r_{i+1} = q_r r_i \); hence \(r_i \mid r_{i-1} \) \((\text{WHY})\), \ldots) Hence finally one has that \(d \mid r_i \) and \(r_i \mid d \), thus \(d = r_i \) \((\text{WHY})\), as claimed. To 3): The key point in the proof is the following:
Key Lemma. A number \(p \in \mathbb{N} \) is a prime number iff for all \(m, n \in \mathbb{N} \) one has:

\[
p \mid (m \cdot n) \Rightarrow (p \mid m \text{ or } p \mid n)
\]

Proof. (of the Key Lemma) The implication “\(\Leftarrow \)”: We have to show that the only divisors of \(p \) are 1, \(p \). Indeed, if \(m \mid p \), then there exists \(n \) such that \(p = m \cdot n \). Hence by the hypothesis on \(p \), one has \(p \mid m \) or \(p \mid n \).

W.l.o.g., let \(p \mid m \). Then by definition, there exists \(k \in \mathbb{N} \) such that \(m = p \cdot k \). Hence finally one has:

\[
p = m \cdot n = (p \cdot k) \cdot n = p \cdot (k \cdot n)
\]

and by the cancelation property, one gets \(1 = k \cdot n \) (WHY), thus \(k = n = 1 \) (WHY). Hence conclude that \(p = m \cdot n = m = 1 \).

The implication “\(\Rightarrow \)”: We make induction on \(p \), and claim that \(Q_p \equiv [(p \text{ prime } \& \ p((m \cdot n)) \Rightarrow (p \mid m \lor p \mid n)] \) are true for all prime numbers. Indeed, first, \(Q_2 \) asserts that if \(2(m \cdot n) \text{ then } 2 \mid m \text{ or } 2 \mid n \). By contradiction, suppose that 2 does neither divide \(m \) nor \(n \). Then \(m = 2k + 1, n = 2l + 1 \) for some \(k, l \), hence \(m \cdot n = 2(2k \cdot l + k + l) + 1 \), hence 2 does not divide \(m \cdot n \), contradiction! Second, to prove \(Q_p \), suppose that \(Q_q \) are true for all \(q < p \). Let \(p \mid (m \cdot n) \), and by contradiction, suppose that \(p \) does not divide either \(m \) or \(n \). Hence using division with remainder, one has \(m = m' \cdot p + r, n = n' \cdot p + s \) with \(0 \leq r, s < p \). Hence on gets:

\[
m \cdot n = p(p \cdot m' \cdot n' + m' + n') + r \cdot s = p \cdot k + r \cdot s, \quad \text{where } k := p \cdot m' \cdot n' + m' + n'
\]

and therefore one has: Since \(p \) divides both \(m \cdot n \) and \(p \cdot k \), it follows that \(p \mid (r \cdot s) \) (WHY). We claim that actually 1 < \(r, s \). Indeed, since by the contradiction assumption, \(p \) does not divide \(m \) or \(n \), we must have \(r, s \neq 0 \) (WHY). Second, if \(r = 1 \) or \(s = 1 \), then \(p \mid r \cdot s = s \) or \(r \cdot s = r \) (WHY), and since \(r, s < p \), this is a contradiction! Hence we conclude that \(r, s > 1 \), and since \(p \mid (r \cdot s) \), one has: There exists \(l \in \mathbb{N} \) such that

\[
p = r \cdot s.
\]

To reach the desired contradiction, we make induction on \(l \). First, if \(l = 1 \), then \(p \mid p \cdot l = r \cdot s \), thus contradicting the fact that \(p \) is a prime number (WHY). Next suppose that \(l > 1 \). Let \(q \) be any prime number dividing \(r \), say \(r = q \cdot r' \) for some \(r' \in \mathbb{N} \). Then \(q \leq r < p \), hence \(Q_q \) is true (WHY). And since \(q \) divides \(r \cdot s = p \cdot l \), we must have \(q \mid q \cdot (p \cdot l) \); and since \(p \) is a prime number, and \(q < p \), we finally must have \(q \mid l \). Then setting \(l = q \cdot l \), we get \(p \cdot l = p \cdot q \cdot l = q \cdot r' \cdot s \), hence \(p \cdot q \cdot l = q \cdot r' \cdot s \). Thus by the cancelation property, one gets \(p \cdot l = r \cdot s \). Hence since \(l' < l \) (WHY), we reached a contradiction. The Key Lemma is proved. \(\square \)

Coming back to the proof of assertion 3) of the Theorem, one has: Let \(p_1 \ldots p_r = n = q_1 \ldots q_s \) be presentations of \(n \) as product of prime numbers \(p_1 \leq \ldots \leq p_r \) and \(q_1 \leq \ldots \leq q_s \). We prove that \(p_r = q_s \). Indeed, let \(p \) be the maximal prime number dividing \(n \). Then \(p_r, q_s \leq p \) (WHY), and since \(p \mid (p_1 \ldots p_r) \), it follows that \(p \mid p_i \) for some \(p_i \) (WHY), thus \(p = p_i \) (WHY). Hence one has \(p = p_1 \leq p_r \leq p \), concluding that \(p = p_r \).

Similarly, \(p = q_s \), thus \(p_r = p = q_s \), as claimed. Hence if \(r = 1 \) or \(s = 1 \), or equivalently, \(n = p_r \) or \(n = q_s \), we are done (WHY). If \(r, s > 1 \), then setting \(n = m \cdot p_r = m \cdot n = m \cdot q_s \), one has: \(p_1 \ldots p_{r-1} = m = q_1 \ldots q_{s-1} \) (WHY). Thus making induction on \(n \), we have that \(m < n \). Therefore, by the induction hypothesis, one has \(r - 1 = s - 1 \), and \(p_i = q_i \) for \(1 \leq i \leq r - 1 = s - 1 \) (WHY). Hence \(r = s \), and \(p_i = p_j \) for \(1 \leq i \leq r = s \) (WHY). \(\square \)

Remark 2.7. There is a host of open important and fascinating problems concerning prime numbers and factorization of numbers. Some problems are of theoretical and/or philosophical nature, whereas other such problems are of fundamental importance for encryption and coding of information. Here is a mini-list of such questions:

1) The **twin-prime Problem:** Are there infinitely many prime numbers \(p_k \) such that \(p_k + 2 \) is a prime number as well? (Google it!)

Example 2.8. \((3, 5), (5, 7), (11, 13), (17, 19), \ldots\) are pairs of twin-prime numbers.

2) Given any \(n \in \mathbb{N} \), is there a prime number \(p \) such that \(n^2 \leq p \leq (n + 1)^2 ? \) More general, what can one say about the gaps between prime numbers, i.e., \(p_{k+1} - p_k \) of any consecutive primes \(p_k, p_{k+1} \)? [prime gaps (Google it!)]
3) What is the minimal number of operation necessary to check whether a given natural number \(n\) is a prime number? \(\text{[primality Test \(\text{Google it!}\)]}\)
4) What is the minimal number of operations necessary to find a prime factor of a natural number \(n\)? \(\text{[factorization Problem \(\text{Google it!}\)]}\)

3. The ring of integer numbers \(\mathbb{Z}, +, \cdot\).

The deficiency of computation in the natural numbers is lacking the possibility of making subtractions \(\text{“}m-n\text{”}\) for \(m, n \in \mathbb{N}\), whereas that feature would be very useful for practical and philosophical reasons; e.g. to solve very simple equations of the form \(x + n = m\).

Note. One can though define subtraction partially, namely, if \(k + m = n\), one can set \(k := n - m, m \defeq n - k\), but this does not completely solve the problem of subtraction \(\text{[WHY]}\).

The remedy for the lack of subtraction is to define/introduce a bigger set of numbers which, first contains \(\mathbb{N}\), and second, has addition \(\oplus\) and multiplication \(\cdot\) prolonging the ones from \(\mathbb{N}\). The set of “numbers” with those properties together with \(\oplus\) and \(\cdot\) is the

ring of integer numbers \(\mathbb{Z}, +, \cdot\).

The definition of the set of integer numbers \(\mathbb{Z}\) is as follows: Let \(\mathcal{Z} \defeq \mathbb{N} \times \mathbb{N}\) viewed as a set, and define on \(\mathcal{Z}\) the following relation: \((m, n) \sim (m', n') \iff m + n' = m' + n\). Intuitively, if we denote \((m-n) \defeq (m, n)\), then the relation \(\sim\) means simply that:

\[
(m-n) = (m'-n') \iff m + n' = m' + n,
\]

which makes complete sense in \(\mathbb{N}\) \(\text{[WHY]}\).

Claim. \(\sim\) is an equivalence relation on \(\mathcal{Z}\).

Indeed, reflexivity \((m, n) \sim (m, n)\), and antisymmetry \((m, n) \sim (m', n') \iff (m', n') \sim (m, n)\) are clear \(\text{[WHY]}\). Finally, for transitivity, let \((n, m) \sim (m', n') \& (n', m'') \sim (m'', n'')\) be given. Then \(m + n' = m' + n \& m' + n'' = m'' + n'\) \(\text{[WHY]}\), hence \(m + n' + m' + n'' = m' + n + m'' + n'\) \(\text{[WHY]}\), thus canceling \(m' + n'\) we get: \(m + n'' = n + m''\), i.e., \((n, m) \sim (m', n'')\) as claimed.

Notations. We denote \(\mathbb{Z} \defeq \mathcal{Z}/\sim\) and call it the set of integer numbers. And for the time being, we denote the equivalence class \((m, n)/\sim\) of \((m, n)\) by \((m-n) \defeq (m, n)/\sim\).

Theorem 3.1. In the above notations, the following hold:

1) Defined an addition \(\oplus\) on \(\mathbb{Z}\) by \((m-n) \oplus (k-l) \defeq [(m+k)-(n+l)]. Then \(\oplus\) is well defined, and \(\mathbb{Z}, \oplus\) is an abelian group.

2) Defined a multiplication \(\cdot\) on \(\mathbb{Z}\) by \((m-n) \cdot (k-l) \defeq [(mk+nl)-(ml+nk)]. Then \(\cdot\) is well defined, and \(\mathbb{Z}, \cdot\) is an abelian monoid with cancellation.

3) The multiplication \(\cdot\) is distributive w.r.t. the addition \(\oplus\).

Moreover, the map \(\iota: \mathbb{N} \rightarrow \mathbb{Z}\) defined by \(\iota(n) \defeq (n-0)\) is injective and satisfies:

\[
\iota(0) = 0, \iota(1) = 1, \iota(m + n) = \iota(m) \oplus \iota(n), \iota(m \cdot n) = \iota(m) \cdot \iota(n) \forall m, n \in \mathbb{N}.
\]

Terminology. \(\mathbb{Z}, +, \cdot\) is called the ring of integer numbers.
Proof. To 1): We first prove that \oplus is well defined. That is, we have to prove that if $(m, n) \sim (m', n')$ and $(k, l) \sim (k', l')$, then $(m-n) \oplus (k-l) = (m'-n') \oplus (k'-l')$. Equivalently, we have to show that $m + n' = m' + n$ & $k + l' = k' + l \Rightarrow (m + k, n + l) \sim (m' + k', n' + l') \quad \text{(WHY)}$. OTOH, the latter condition is equivalent to $m + k + n' + l' = m' + k' + n + l$, and that follows by simply adding $m + n' = m' + n$ & $k + l' = k' + l$. Further, the associativity and commutativity of \oplus follow instantly from the definition of \oplus together with the associativity and commutativity of $+$ in \mathbb{N} \text{(HOW)}. Next one checks that $0_\mathbb{Z} := (0, 0)$ is neutral element for \oplus, and that $(n-m)$ is the inverse of $(m-n)$ \text{w.r.t.} \oplus \text{(WHY)}. In particular, the inverse of $k = (k-0)$ \text{w.r.t.} the addition \oplus is $-k := (0-k)$, and the inverse of $l = (l-0)$ \text{w.r.t.} addition is $l = (l-0)$ \text{WHY}.

To 2) As above, we first prove that \cdot is well defined. That is, we have to prove that if $(m, n) \sim (m', n')$ and $(k, l) \sim (k', l')$, then $(m-n) \cdot (k-l) = (m'-n') \cdot (k'-l')$. For that it is sufficient to show that

$$(m-n) \cdot (k-l) = (m'-n') \cdot (k-l), \quad \text{and} \quad (m-n) \cdot (k-l) = (m'-n') \cdot (k'-l') \quad \text{(WHY)}.$$

We prove the first assertion (the second one being proven completely similarly). Hence we have to show that $m + n' = m' + n \Rightarrow (mk + nl, ml + nk) \sim (m'k + nl', ml' + nk')$ \text{(WHY)}, or equivalently, to show that $mk + nl + ml' + nk' \equiv (m + n')k + (m + n')l \equiv (m' + n)k + (m + n')l \equiv m'k + nl + ml + nk'$ \text{(WHY)}. On the other hand, since $m + n' = m' + n$, one has:

$$mk + nl + ml' + nk' \equiv (m + n')k + (m + n')l \equiv (m' + n)k + (m + n')l \equiv m'k + ml + nl + nk', \quad \text{done!}$$

Further, the associativity and commutativity of \cdot follow instantly from the definition of \cdot together with the associativity and commutativity of $+$ and \cdot in \mathbb{N} \text{HOW}. And $1_\mathbb{Z} := (1-0)$ is neutral element for multiplication:

$$(m-n) \cdot 1_\mathbb{Z} \equiv 1_\mathbb{Z} \cdot (m-n) \overset{\text{def}}{=} ((1 \cdot m + 0 \cdot n) - (0 \cdot m + 1 \cdot n)) = (m-n) \quad \text{(WHY)}.$$

To 3): Ex (use the definitions of \oplus and \cdot and the properties of $+$ and \cdot in \mathbb{N}).

Finally, the assertions concerning the map $\cdot : \mathbb{N} \to \mathbb{Z}$ follow directly from the definition \text{HOW} Ex...

\[\square\]

Remark 3.2. In the above notations one has:

a) Let $m \geq n$, hence $m = n + k$ for a unique $k \in \mathbb{N}$ \text{WHY}. In particular, $(m, n) \sim (k, 0)$ \text{WHY}. Similarly, if $m \leq n$, then $m + l = n$ for a unique $l \in \mathbb{N}$, and if so, then $(m, n) \sim (0, l)$.

b) Moreover, $(k, 0) \sim (k', 0)$ iff $k = k'$ \text{WHY}, and similarly, $(0, l) \sim (0, l')$ iff $l = l'$ \text{WHY}.

c) Hence we conclude that the equivalence class of every (m, n), denoted $(m-n)$, equals either $(k-0)$, or $(0-l)$ for a unique $k \in \mathbb{N}$, respectively $l \in \mathbb{N}$ \text{WHY}.

Convention. We identify every $n \in \mathbb{N}$ with $n := (n-0) \in \mathbb{Z}$, and view \mathbb{N} as subset of \mathbb{Z}. In particular, since by the Remark 3.2, b) above, every $(m-n) \in \mathbb{Z}$ is either of the form $(k-0)$ or of the form $(0-l)$, it follows that setting $-n := (0-n)$, one has that $Z = \{ -n \mid n \in \mathbb{N} \} \cup \{ n \mid n \in \mathbb{N} \} = \{ ..., -n, ..., -2, -1, 0, 1, 2, ..., n, ... \}$

Note that with these notations one actually has:

$$\overset{\text{WHY}}{(m-n)} \equiv (m-0) + (0-n) = m + (-n) = m - n \quad \text{with} \quad m, n \in \mathbb{N},$$

hence the interpretation of $(m-n)$ is compatible with the usual addition (and multiplication) in $Z = \{ -n \mid n \in \mathbb{N} \} \cup \{ n \mid n \in \mathbb{N} \}$ as defined above (as an abstract set).

Definition 3.3. Define on \mathbb{Z} the relation $a = (m-n) \leq (k-l) = b \overset{\text{def}}{=} m + l \leq k + n$.

Proposition 3.4. In the above notation, the following hold:

1) The relation \leq on \mathbb{Z} is a total ordering, and $a \leq b \iff b = a + r$ for some $r \in \mathbb{N}$. Further, for $m, n \in \mathbb{N}$ one has: $m \leq n$ in \mathbb{N} iff $m \leq n$ in \mathbb{Z}.

2) The ordering \leq on \mathbb{Z} is compatible with the addition and the multiplication, i.e., $\forall a, b, c \in \mathbb{Z}$, one has: $a \leq b \Rightarrow a + c \leq b + c$, and $a \cdot c \leq b \cdot c$, provided $c \geq 0_\mathbb{Z}$.
Theorem 3.5. The addition, multiplication, and ordering in \(\mathbb{Z} \) satisfy cancellation, i.e., for all \(a, b, c \in \mathbb{Z} \), the following hold:

1) \(a + c = b + c \iff a = b \).
2) \(a \cdot c = b \cdot c \iff a = b \), provided \(c \neq 0_\mathbb{Z} \).
3) \(a \leq b \iff a \cdot c \leq b \cdot c \), provided \(c > 0_\mathbb{Z} \).
4) \(a^2 > 0 \) for all \(a \in \mathbb{Z} \), \(a \neq 0_\mathbb{Z} \), i.e., the squares of non-zero integers are positive.

Proof. To 1): \textbf{Ex} (use the fact that \(\mathbb{Z} \), + is a group). To 2): Let \(a = (m-n) \) and \(b = (k-l) \). First, suppose that \(c = r := (r-0) \) for some \(r \in \mathbb{N} \); in particular, since \(c \neq 0_\mathbb{Z} \), one must have \(r \neq 0 \) (WHY). One has:

\[
(mr-nr) \equiv (m-n) \cdot (r-0) = a \cdot c = b \cdot c = (k-l) \cdot (r-0) \equiv (kr-lr),
\]

hence \(mr + lr = kr + nr \), thus \((m + l)r = (k + n)r \). Therefore, since \(r \neq 0 \) in \(\mathbb{N} \), by the cancellation property in \(\mathbb{N} \) one gets: \(m + l = k + n \), thus \(a = (m-n) = (k-l) = b \). Second, if \(c = -r \) for some \(r \in \mathbb{N} \), \(r \neq 0 \), \textbf{Ex} . . .

To 3): Notice that by the definition of \(\leq \) one has: If \(c > 0_\mathbb{Z} \), then \(c = (k-0) \) for some \(k \in \mathbb{N} \), \(k \neq 0 \) (WHY). Hence in the notations from the proof of assertion 2), first case, one has: \(a \cdot c \leq b \cdot c \iff (mr-nr) \leq (kr-lr) \) iff \(n + l \leq m + l \) iff \(\exists s \in \mathbb{N} \) such that \(\iff mr + lr + s = kr + nr \) (WHY). Hence by the divisibility in \(\mathbb{N} \), it follows that \(r|s \) in \(\mathbb{N} \) (WHY), hence \(s = rs' \) for some \(s' \in \mathbb{N} \). Hence finally get \((m + l + s')r = (k + n)r \), thus \(m + l + s' = k + n \) (WHY). Therefore, \(a + l \leq k + n \), thus \((m-n) \leq (k-l) \) (WHY), and finally \(a \leq b \) (WHY).

To 4): \textbf{Ex} (analyze what happens if \(a < 0_\mathbb{Z} \), respectively \(a > 0_\mathbb{Z} \)) . . .

I) Divisibility in \(\mathbb{Z} \)

Definition 3.6. Let \(a, b \in \mathbb{Z} \) be given.

1) We say that \(b \mid a \) if there exists \(c \in \mathbb{Z} \) s.t. \(a = bc \).
2) We set \(\gcd(0_\mathbb{Z}, 0_\mathbb{Z}) = 0_\mathbb{Z} = \text{lcm}(0_\mathbb{Z}, 0_\mathbb{Z}) \) and for \((a, b) \neq (0_\mathbb{Z}, 0_\mathbb{Z}) \), define:

\[
\gcd(a, b) = \max\{d \in \mathbb{N} \mid d \mid a, d \mid b\}, \quad \text{lcm}(a, b) = \min\{d \in \mathbb{N} \mid a \mid d, b \mid d\}
\]

Remark 3.7. Let \(a \in \mathbb{Z} \) be given. The following hold:

a) \(a = 0_\mathbb{Z} \) iff \(b \mid a \) for all \(b \in \mathbb{Z} \) (WHY).

b) \(a \) has a multiplicative inverse iff \(a = \pm 1_\mathbb{Z} \) (WHY).

c) If \(a \neq 0_\mathbb{Z}, \pm 1_\mathbb{Z} \), there exist unique prime numbers \(p_1 \leq p_r \) such that \(a = \pm p_1 \cdots p_r \).

Proposition 3.8. Let \(a, b \in \mathbb{Z} \) be given, \(b \neq 0_\mathbb{Z} \). The following hold:

1) There exist unique \(q \in \mathbb{Z}, r \in \mathbb{N} \) s.t. \(b = a q + r \), \(0 \leq r < |a| \). In other words, division with remainder holds in \(\mathbb{Z} \), and \(q, r \) are called the result, resp. the remainder of the division.

2) Euclidean algorithm: There exist unique \(u, v \in \mathbb{Z} \) with \(|u| < |b| \) and \(|v| < |a| \) such that

\[
\gcd(a, b) = a u + b v.
\]

Proof. \textbf{Ex Hints}: To 1): Set \(m := |a|, n := |b|, \) and performing division with reminder of \(n \) by \(m \), get \(|b| = |a| q_0 + r_0 \) with \(0 \leq r_0 < |a| \), etc. To 2): Use division with reminder and make induction on \(|b| \) . . .

II) Modular Arithmetic

For \(n \in \mathbb{N} \), define on \(\mathbb{Z} \) the relation \(\sim_n \) by \(a \sim_n b \iff n \mid (a - b) \).
Theorem 3.9. The following hold:

1) The relation \(a \sim_n b \) is an equivalence relation on \(\mathbb{Z} \), having \(\overline{a} := a + n\mathbb{Z} \) as equivalence classes. The set of equivalence classes \(\mathbb{Z} / \sim_n \) is denoted \(\mathbb{Z} / \sim_n \equiv \mathbb{Z} / n\mathbb{Z} \), and one has:

\[
\mathbb{Z} / n\mathbb{Z} = \{ \overline{0}, \ldots, \overline{n-1} \}.
\]

2) The addition \(+ \) and multiplication \(\cdot \) defined below are well defined, and make \(\mathbb{Z} / n\mathbb{Z} \) into a commutative ring having \(0_{\mathbb{Z}/n\mathbb{Z}} = \overline{0} \) as zero element and \(1_{\mathbb{Z}/n\mathbb{Z}} = \overline{1} \) as unity element:

\[
\overline{x} + \overline{y} := \overline{x + y}, \quad \overline{x} \cdot \overline{y} = \overline{x \cdot y}.
\]

3) Finally, the map \(\varphi : \mathbb{Z} \to \mathbb{Z} / n\mathbb{Z}, a \mapsto \overline{a} \) is compatible with addition and multiplication, i.e., it satisfies:

\[
\varphi(x + y) = \varphi(x) + \varphi(y), \quad \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y).
\]

Proof. Ex...

Definition 3.10. Computation in \(\mathbb{Z} / n\mathbb{Z} \) is called (mod \(n \)) modular arithmetic

Ex 3.11. Show that \(\mathbb{Z} = \mathbb{Z} / m\mathbb{Z} \) iff \(n = 0 \). Further, \(\mathbb{Z} / m\mathbb{Z} = \{ \overline{0} \} \) iff \(m = 1 \) iff \(\overline{1} = \overline{0} \).

Definition 3.12. An element \(\overline{a} \in \mathbb{Z} / n\mathbb{Z} \) is called:

1) zero divisor, if there exists \(\overline{a}' \neq \overline{0} \) such that \(\overline{a} \overline{a}' = \overline{0} \).

Note that \(\overline{0} \) is always a zero divisor, called the trivial zero divisor.

2) invertible, if \(\overline{0} \neq \overline{1} \) and there exists \(\overline{a}' \neq \overline{0} \) such that \(\overline{a} \overline{a}' = \overline{1} \).

Ex 3.13. Answer the following:

1) What are the zero divisors, respectively the invertible elements in \(\mathbb{Z} / 30\mathbb{Z} \)?

2) Solve the following (systems of) equations in \(\mathbb{Z} / 30\mathbb{Z} \):

\[
a) \quad 3x + 5 = \overline{0} \quad b) \quad 4x^2 - x + 5 = \overline{0} \quad b) \quad \begin{cases} x - y = \overline{2} \\ 2x + 7y = \overline{0} \end{cases}
\]

Ex 3.14. Prove/disprove/answer the following:

a) The product of two invertible elements is again invertible.

b) Is the same true for zero divisors?

c) A zero divisor is not invertible, and an invertible element id not a zero divisor.

Theorem 3.15. Suppose that \(m > 1 \). Then the following hold:

1) \(\overline{a} \in \mathbb{Z} / n\mathbb{Z} \) is a zero divisor iff \(\gcd(a, n) \neq 1 \).

2) \(\overline{a} \in \mathbb{Z} / n\mathbb{Z} \) is invertible iff \(\gcd(a, n) = 1 \).

In particular, in \(\mathbb{Z} / n\mathbb{Z} \) one has: Every element is either a zero divisor, or invertible.

Proof. Ex...

Remark 3.16. \(\mathbb{Z} / n\mathbb{Z} \) is a field iff \(n \) is a prime number. The finite fields are denoted:

\[
\mathbb{F}_2 := \mathbb{Z} / 2\mathbb{Z}, \ \mathbb{F}_3 := \mathbb{Z} / 3\mathbb{Z}, \ldots, \ \mathbb{F}_p := \mathbb{Z} / p\mathbb{Z}, \ldots
\]
4. The field of rational numbers $\mathbb{Q}, +, \cdot$

The integers \mathbb{Z} have the disadvantage that one cannot solve in \mathbb{Z} simple linear equations, e.g., $2x = -3$, etc. Equivalently, that means in fact that in the ring of integers \mathbb{Z} one cannot divide by non-zero integer numbers, e.g., “$-3/2$” is not a number in \mathbb{Z}.

Note. One can though define division in \mathbb{Z} partially, namely, if $a = b \cdot c$ with $a, b, c \in \mathbb{Z}$, $c \neq 0_\mathbb{Z}$, one can set $b := \frac{a}{c}$, but this does not solve the problem of division (WHY).

The remedy for that is to consider/define a larger set of numbers, which contains in a natural way the integers \mathbb{Z}, and is endowed with an addition $+$ and multiplication \cdot which extend the ones in \mathbb{Z}. The set of “numbers” with those properties together with $+$ and \cdot is the

field of rational numbers $\mathbb{Q}, +, \cdot$.

The definition of the set of rational numbers \mathbb{Q} is as follows: Let $\mathbb{Q} := \mathbb{Z} \times \mathbb{Z}^*$ viewed as a set, where $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ is the set of non-zero integer numbers, and define on \mathbb{Q} the relation:

$$ ((a, r) \sim (a', r')) \iff a \cdot r' = a' \cdot r $$

Claim. \sim is an equivalence relation on \mathbb{Q}.

Indeed, reflexivity $(a, r) \sim (a, r)$, and antisymmetry $(a, r) \sim (a', r')$ iff $(a, r') \sim (a, r)$ are clear (WHY). Finally, for transitivity, let $(a, r) \sim (a', r') \& (a', r') \sim (a'', r'')$ be given. Then $a \cdot r' = a' \cdot r & a' \cdot r'' = a'' \cdot r' \Rightarrow a \cdot r'' = a' \cdot r \cdot a'' \cdot r' \Rightarrow a \cdot r'' = a'' \cdot r \Rightarrow a \cdot r'' = a'' \cdot r$ (WHY). Hence since $r, r', r'' \neq 0_\mathbb{Z}$, one has: First, if $s' = 0_\mathbb{Z}$, then $a = a'' = 0_\mathbb{Z}$ (WHY), hence $a \cdot r'' = a'' \cdot r$ (WHY); second, if $a' \neq 0_\mathbb{Z}$, then $a' \cdot r' \neq 0_\mathbb{Z}$ (WHY), hence one has cancellation by $a' \cdot r'$ in \mathbb{Z} (WHY), and one gets again $a \cdot r'' = a'' \cdot r$ (WHY); thus finally one always has $a \cdot r'' = a'' \cdot r$, as claimed.

Notations/Remark. We denote $\mathbb{Q} := \mathbb{Q} / \sim$ and call it the set of [rational numbers](#). And for the time being, we denote the equivalence class $(a, r) / \sim$ of (a, r) by $\frac{a}{r} := (a, r) / \sim$.

We call $\frac{a}{r}$ a [rational fraction](#) of integer numbers, where a is the [numerator](#), and r is the [denominator](#).

Theorem 4.1. In the above notations, the following hold:

1) Defined an addition $+$ on \mathbb{Q} by $\frac{m}{n} + \frac{b}{s} := \frac{a b + b r}{r s}$. Then $+$ is well defined, and $\mathbb{Q}, +$ is an abelian group.

2) Defined a multiplication \cdot on \mathbb{Q} by $\frac{a}{r} \cdot \frac{b}{s} := \frac{a b}{r s}$. Then \cdot is well defined, and \mathbb{Q}, \cdot is an abelian monoid with cancellation, and every $x \in \mathbb{Q}$, $x \neq 0_\mathbb{Q}$ has a multiplicative inverse.

3) The multiplication \cdot is distributive w.r.t. the addition $+$, and therefore one finally has $\mathbb{Q}, +, \cdot$ is a field.

Moreover, the map $i : \mathbb{Z} \to \mathbb{Q}$ defined by $i(a) := \frac{a}{1}$ is injective and satisfies:

$$ i(0_\mathbb{Z}) = 0_{\mathbb{Q}}, \ i(1_\mathbb{Z}) = 1_{\mathbb{Q}}, \ i(a + b) = i(a) + i(b), \ i(a \cdot b) = i(a) \cdot i(b) \ \forall a, b \in \mathbb{Z}. $$

Terminology. $\mathbb{Q}, +, \cdot$ is called the field of rational numbers.

Proof. To 1): We first prove that $+$ is well defined. That is, we have to prove that if $(a, r) \sim (a', r')$ and $(b, s) \sim (b', s')$, then $\frac{a}{r} + \frac{b}{s} = \frac{a'}{r'} + \frac{b'}{s'}$. Equivalently, we have to show that

$$ a r' = a' r \ & b s' = b' s \ \Rightarrow \ (a s + b r, r s) \sim (a' s' + b' r', r' s') \ \text{(WHY)}. $$

Proposition 4.4. The following hold:
\[(as + br)rs' = (a's' + b'r')rs,\]
and that follows easily, because:
\[(as + br)rs' \equiv (ar')ss' + (bs')rr' \equiv (a'r)ss' + (b's)rr' \equiv (a's' + b's')rs\]

Further, the associativity and commutativity of \(\ast\) follow instantly from the definition of \(\ast\) together with the associativity and commutativity of + in \(\mathbb{Z}\) (HOW). Next one checks that \(0 = \frac{0}{1}\) is neutral element for \(\ast\), and that \(\frac{-a}{b}\) is the inverse of \(\frac{a}{b}\) w.r.t. \(\ast\) (WHY).

To 2) As above, we first prove that • is well defined. That is, we have to prove that if \(ar' = a'r \& bs' = b's \Rightarrow (ab, rs) \sim (a'b', r's')\) (WHY), or equivalently, that \(abrs' = a'b'rs\), and that is clear (WHY). Further, the associativity and commutativity of • follow instantly from the definition of • together with the associativity and commutativity of + and • in \(\mathbb{N}\) (HOW). And \(1_Q := \frac{1}{1}b\) is neutral element for multiplication (WHY).

To 3): \(\text{Ex}\) (use the definitions of \(\ast\) and • and the properties of + and • in \(\mathbb{Z}\)).

Finally, the assertions concerning the map \(i : \mathbb{Z} \to \mathbb{Q}\) follow directly from the definition (HOW) \(\text{Ex} \ldots \) \(\Box\)

Convention. We identify every \(a \in \mathbb{Z}\) with \(i(a) = \frac{a}{1} \in \mathbb{Q}\), and view \(\mathbb{Z}\) as subset of \(\mathbb{Q}\). In particular, since \(\mathbb{N}\) is identified with all the integers of the form \((n-0)\), and \(\mathbb{N}\) is viewed as a subset of \(\mathbb{Z}\), we finally has canonical inclusions
\[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}\]
by identifying/setting \(n = (n-0) = \frac{n}{1}\)

Moreover, the inclusions above are compatible with addition and multiplication, and identify
\[\text{addition: } 0 = 0_Q = 0_{\mathbb{Q}}, \text{ multiplication: } 1 = 1_{\mathbb{Z}} = 1_{\mathbb{Q}}.\]

Remark 4.2. Let \(x = \frac{a}{r} \in \mathbb{Q}\) be a fixed rational number. Then \(x = \frac{ar}{rr}\) (WHY), and letting
\(d = \gcd(ar, r^2) \in \mathbb{N}\) be the greatest common divisor of \(ar\) and \(r^2 > 0\), one has:
\[x = \frac{ar}{rr} = \frac{daq}{drr} = \frac{aq}{rr} (WHY)\]
and \(x = \frac{aq}{rr}\) is called the reduced form of \(x\). The reduced form of each \(x \in \mathbb{Q}\) is unique (WHY).

Definition 4.3. Define on \(\mathbb{Q}\) the relation \(x \leq y \overset{\text{def}}{\iff} y - x = \frac{a}{r} \text{ with } 0_z \leq a, 0_z < r.\)

Proposition 4.4. The following hold:
1) The relation \(\leq\) on \(\mathbb{Q}\) is a total ordering, and for all integer numbers \(a, b \in \mathbb{Z}\) one has:
\(a \leq b \text{ in } \mathbb{Z} \iff a \leq b \text{ in } \mathbb{Q}\.\)
2) The ordering \(\leq\) on \(\mathbb{Q}\) is compatible with the addition and the multiplication, i.e.,
\(\forall x, y, z \in \mathbb{Q}, \text{ one has: } x \leq y \Rightarrow x + z \leq y + z, \text{ and } x \cdot z \leq y \cdot z, \text{ provided } z \geq 0_{\mathbb{Q}}.\)

**Proof. \(\text{Ex}\) . . . \(\Box\)

Theorem 4.5. The addition, multiplication, and ordering in \(\mathbb{Q}\) satisfy cancellation, i.e., for all \(x, y, z \in \mathbb{Q}\), the following hold:
1) \(x + z = y + z \iff x = y.\)
2) \(x \cdot z = y \cdot z \iff x = y, \text{ provided } z \neq 0_{\mathbb{Q}}.\)
3) \(x \leq y \iff x \cdot z \leq y \cdot z, \text{ provided } z > 0_{\mathbb{Q}}.\)
4) \(x^2 > 0 \text{ for all } x \in \mathbb{Q}, x \neq 0_{\mathbb{Q}}, \text{ i.e., the squares of non-zero rational numbers are positive.}\)

Proof. To 1) & 2): \(\text{Ex}\) (use the fact that \(\mathbb{Q}, +\) and \(\mathbb{Q^\times}\) := \(\{x \in \mathbb{Q} \mid x \neq 0\}\) endowed with • are groups).
To 3): First, for all \(z \in \mathbb{Q}, x \neq 0_{\mathbb{Q}}, \text{ one has } z^2 > 0_{\mathbb{Q}} \text{ and } z > 0_{\mathbb{Q}} \iff z^{-1} > 0_{\mathbb{Q}} (WHY).\) Thus finally one has:
\(x \cdot z \leq y \cdot z \text{ and } z > 0_{\mathbb{Q}} \text{ imply: } x \cdot z \cdot z^{-1} \leq y \cdot z \cdot z^{-1} (WHY), \text{ thus } x \leq y (WHY).\) \(\Box\)
5. Composition laws & basic algebraic structures

5.1. Basic definitions/facts.

Definition 5.1. A (binary) composition law on a set $X \neq \emptyset$ is any map $\psi : A \times X \to X$.

Notation. Usually, $\psi(x, y)$ is denoted by $x \ast y$, or $x \circ y$, or $x \cdot y$, etc. [read "x composed with y"].

Definition 5.2. Let \ast be a composition law on X. We say that \ast satisfies/has:

- associativity, if $(x \ast y) \ast z = x \ast (y \ast z) \forall x, y, z \in X$.
- commutativity, if $x \ast y = y \ast x \forall x, y \in X$.
- neutral element $e \in X$, if $x \ast e = e = e \ast x \forall x \in X$.
- Suppose that \ast has a neutral element $e \in X$. We say that $x' \in X$ is an inverse of $x \in X$ (w.r.t. \ast), if $x \ast x' = e = x' \ast x$. We say that $x \in X$ is invertible, if x has an inverse $x' \in X$.

Proposition 5.3. Let \ast be a composition law on X. TFH:

1) If $e, e' \in X$ are neutral elements, then $e = e'$ (WHY).
2) If \ast is associative, and $x', x'' \in X$ are inverse elements of x w.r.t. \ast, then $x' = x''$.

Proof. To 1): One has $e' = e' \ast e = e$. To 2): One has: $x' = x' \ast e = x' \ast (x \ast x'') = (x \ast x') \ast x'' = x''$. □

Definition 5.4. Let X, \ast be a set endowed with a composition law.

1) X, \ast is called a (commutative) monoid, if \ast is associative (and commutative), and has a neutral element e_X.
2) X, \ast is called a (commutative) group, if X, \ast is a (commutative) monoid, and every $x \in X$ has an inverse w.r.t. \ast.

Example 5.5.

a) $+$ and \cdot are composition laws on \mathbb{N}, and $\mathbb{N}, +$ and \mathbb{N}, \cdot are commutative monoids (WHY).

What are neutral elements and the investible elements in $\mathbb{N}, +$ and \mathbb{N}, \cdot?

b) Let $X := \mathcal{P}(A)$ be the power set of a given set A. Then X, \cap and X, \cup are commutative monoids (WHY). What are neutral, rest. invertible elements in these monoids, respectively?

(!) Moreover, X endowed with the symmetric difference $A \Delta B := (A \setminus B) \cup (B \setminus A)$ is a commutative group (WHY).

c) The difference $a \ast b := a - b$ is a composition law on \mathbb{Z}, which is not associative, nor commutative (WHY). Does $-$ have a neutral element?

d) Let \leq be a total ordering on a set X. Then $x \ast y := \min(x, y)$ and $x \circ y := \max(x, y)$ are associative and commutative (WHY). Do these composition laws have neutral elements?

e) Let X be a non-empty set. Then $\text{Maps}(X) := \{f \mid f : X \to X \text{ map} \}$ endowed with the usual composition of maps $f \ast g := f \circ g$ is a monoid having $\text{id}_X : X \to X$, $\text{id}_X(x) = x$ is neutral element, which is non-commutative if $|X| > 1$ (WHY).

f) Let X be a non-empty set. Then $\text{Bij}(X) := \{f \mid f : X \to X \text{ bijective} \} \subset \text{Maps}(X)$ consists of the precisely invertible elements in the monoid $\text{Maps}(X)$, \circ (WHY). In particular, $\text{Bij}(X), \circ$ is a group (WHY), which is non-commutative if $|X| > 2$ (WHY).
The permutation group S_n. If $X = \{1, \ldots, n\}$, one sets $S_n \overset{\text{def}}{=} \text{Bij}(X)$, and calls it the permutation group of n elements. The elements $\sigma \in S_n$ are presented in the form:

$$\sigma := (i_1 \cdot \cdot \cdot i_n), \quad i_k = \sigma(k) \forall 1 \leq k \leq n.$$

Definition 5.6. A (commutative) ring is a set R endowed with two composition laws, the addition $+$, and the multiplication \cdot, satisfying the following:

1) $R, +$ is a commutative group, hence the addition $+$ is associative, commutative, has a neutral element, denoted 0_R and called the zero (element) of R, and every $x \in R$ has an additive inverse, i.e., an inverse w.r.t. the addition $+$, denoted $-x$.

2) R, \cdot is a (commutative) monoid, with neutral element denoted 1_R, called the unit (element) of R. The invertible elements of R w.r.t. multiplication are called units of R.

3) The multiplication \cdot is distributive w.r.t. addition, i.e., $\forall x, y, z \in R$ one has:

$$z \cdot (x + y) = z \cdot x + z \cdot y, \quad (x + y) \cdot z = x \cdot z + y \cdot z.$$

Definition 5.7. A ring $R, +, \cdot$ is called a skew field, if every $x \in R$, $x \neq 0_R$ is invertible w.r.t. multiplication. Commutative skew fields are called simply fields.

Example 5.8 (NOTE: The rings & (skew) fields below will be “officially” defined later).

a) $\mathbb{Z}, +, \cdot$ is a commutative rings.

b) Given a (commutative) ring R, e.g. $R = \mathbb{Z}$, the rings of polynomials $R[t]$ in the variable t with coefficients in R is a (commutative) ring.

Definition 5.9. (Computation rules in rings)

Let $R, +, \cdot$ be a ring with 0_R and 1_R. For $n \in \mathbb{N}, \ (m-n) \in \mathbb{Z}$, and $a \in R$, define:

a) $0a \overset{\text{def}}{=} 0_R$, and inductively on n, set $(n+1)a \overset{\text{def}}{=} na + a$; $(m-n)a \overset{\text{def}}{=} ma - na$

b) $a^1 \overset{\text{def}}{=} a$, and inductively on n, set $a^{n+1} \overset{\text{def}}{=} a^n \cdot a$

(!) Note that setting/defining a^0 is trickier; one could set $a^0 = 1$ if $a \in R^\times$, but else . . .

Proposition 5.10 (Computation rules in rings). Let $R, +, \cdot$ be a ring. TFH:

1) $0_R \cdot x = 0_R = x \cdot 0_R = (-1_R) \cdot x = -x = x \cdot (-1_R)$ for all $x \in R$.

2) $(\sum_{i=1}^m a_i)(\sum_{j=1}^n b_j) = \sum_{i,j} a_i b_j$ for all $a_i, b_j \in R, \ m, n \in \mathbb{N}_{>0}$.

3) $a^m \cdot a^n = a^{m+n}$ and $(a^n)^n = a^{mn}$ for all $a \in R$ and $m, n \in \mathbb{N}_{>0}$.

4) Let $a, b \in R$ be such that $a \cdot b = b \cdot a$. Then for all $m, n \in \mathbb{N}_{>0}$ one has $(ab)^n = a^m b^m$ and the binomial formula holds:

$$(a + b)^1 = a + b, \quad (a + b)^n = a^n + \sum_{k=1}^{n-1} \binom{n}{k} a^{n-k} b^k + b^n \quad \text{for} \quad n > 1$$
Proof. To 1): $0_R \cdot x := (0_R + 0_R) \cdot x := 0_R \cdot x + 0_R \cdot x$, hence $0_R \cdot x + (-0_R \cdot x) = (0_R \cdot x + 0_R \cdot x) + (-0_R \cdot x)$, thus $0_R = 0_R \cdot x$ (WHY), etc. Further, $0_R = (1_R - 1_R) \cdot x = x + (-1_R) \cdot x$, hence $(-1_R) \cdot x = -x$ (WHY), etc.

To 2): Ex (make double induction on m, n, etc.) To 3): Ex (make induction on n, and use the binomial identity $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ — which itself has to be proved by induction on k (HOW) \[\square \]

5.2. The group attached to a commutative monoid.

Definition 5.11. Let $X, *$ be a set endowed with a composition law. One says that $*$ has left cancellation, or the left cancellation property, if for all $x, y, z \in X$ one has: $z * x = z * y \Rightarrow x = y$. Define correspondingly the right cancellation, and notice that if $*$ is commutative, then left/right cancellations are equivalent (WHY).

Example 5.12. The following hold:
- $\mathbb{N}, +$ and $\mathbb{N}_{>0}, \cdot$ have cancellation (WHY).
- Which among the composition laws \cup, \cap, Δ on $X := \mathcal{P}(A)$ have cancellation?
- Is there cancellation in the monoid $\text{Maps}(X), \circ$?

Proposition 5.13. Let $M, *$ be a commutative monoid. On the set $M \times M$ consider the relation $(a, b) \sim (a', b') \iff \exists x \in M \text{ s.t. } a \cdot b' \cdot x = a' \cdot b \cdot x$. Then the following hold:

1) The relation \sim is an equivalence relation on the set $M \times M$. For $(a, b) \in M \times M$, let $\overline{(a, b)}$ be its equivalence class, and set $G := \frac{M \times M}{\sim}$ be the set of equivalence classes.

2) Define on G the composition law: $\overline{(a, b)} \cdot \overline{(c, d)} := \overline{(a * c, b * d)}$. Then $*$ is well defined, and $G, *$ is a group, with $\epsilon_G := \overline{(e_M, e_M)} = (a, a)$, and $\overline{(a, b)}^{-1} = \overline{(b, a)}$ for all $a, b \in M$.

3) Moreover, suppose that $M, *$ has cancellation. Then $(a, b) \sim (a', b')$ iff $a \cdot b' = a' \cdot b$, and the map $i : M \rightarrow G$ by $a \mapsto \overline{(a, e)}$ is injective, and satisfies $i(a \cdot b) = i(a) \cdot i(b)$.

Example 5.14. The additive group of integer numbers $\mathbb{Z}, +$

Let $M, *$ be $\mathbb{N}, +$. Then one has $(k, l) \sim (k', l') \iff k + l' = k' + l$. Therefore, the equivalence relation \sim is the previously defined equivalence relation on $\mathbb{Z} := \mathbb{N} \times \mathbb{N}$, and the above abstract construction for $M, *$ delivers the additive group $\mathbb{Z}, +$ of the integer numbers with the usual addition of such numbers.

Example 5.15. The multiplicative group of positive rational numbers $\mathbb{Q}_{>0}$

Let $M, *$ be $\mathbb{N}_{>0}$ endowed with the multiplication \cdot. Then $(n, m) \sim (n', m')$ iff $n \cdot m' = n' \cdot m$ (WHY). In particular, this is the previously equivalence relation on $\mathcal{N} \subset \mathbb{Z}$ used to define the rational numbers. The resulting group attached to $M, *$ is the group of positive rational numbers w.r.t. multiplication (WHY).
5.3. The ring/field attached to a semi-ring/semi-field.

Definition 5.16.

1) A commutative semi-ring is a set \mathcal{R} endowed with two composition laws: **addition** $+$ and **multiplication** \cdot such that $\mathcal{R}, +$ and \mathcal{R}, \cdot are monoids, and \cdot is distributive w.r.t. $+$. One denotes the neutral elements of $+$ and \cdot by $0_\mathcal{R}$, respectively $1_\mathcal{R}$, and called them the **zero element** and **unit element** of \mathcal{R}.

2) A semi-field is any semi-ring $\mathcal{F}, +, \cdot$ such that every $x \in \mathcal{F}$, $x \neq 0_\mathcal{F}$ is invertible w.r.t. the multiplication \cdot, i.e., $\mathcal{F}^\times := \mathcal{F} \setminus \{0_\mathcal{F}\}$ endowed with \cdot is a commutative group.

Example 5.17. On has the following:

a) $\mathbb{N}, +, \cdot$ is a commutative semi-ring (WHY).

b) $\mathbb{Q}_{\geq 0}, +, \cdot$ is a semi-field (WHY).

Proposition 5.18. Let $\mathcal{R}, +, \cdot$ be a commutative semi-ring such that $+$ has cancellation, and let $\mathcal{R}, +$ be the monoid attached to $\mathcal{R}, +$. Further, denote the equivalence class $(\overline{a}, \overline{b})$ by $(a-b) := (\overline{a+b})$ for $a, b \in \mathcal{R}$, and set $1_\mathcal{R} := (1_\mathcal{R} - 0_\mathcal{R})$. Define on \mathcal{R} a **multiplication** \cdot by the rule:

$$(a-b) \cdot (c-d) := ((a \cdot c + b \cdot d) - (a \cdot d + b \cdot c)).$$

Then the multiplication \cdot is well defined, and the following hold:

1) Then $\mathcal{R}, +, \cdot$ is a commutative ring with $1_\mathcal{R}$ as above, and $\iota : \mathcal{R} \to \mathcal{R}$ by $\iota(a) = (a-0_\mathcal{R})$ is injective and satisfies: $\iota(a + b) = \iota(a) + \iota(b)$, $\iota(a \cdot b) = \iota(a) \cdot \iota(b)$.

2) Moreover, if $\mathcal{F}, +, \cdot$ is a semi-field, then the corresponding $\mathcal{F}, +, \cdot$ is a field.

Proof. Ex (the proof is virtually identical with the one constructing $\mathbb{Z}, +, \cdot$ from the semi-ring $\mathbb{N}, +, \cdot$, etc.)

Terminology/Convention. In the above context, $\mathcal{R}, +, \cdot$ and $\mathcal{F}, +, \cdot$ are called the ring, respectively field, attached to \mathcal{R}, respectively \mathcal{F}. Via the embedding $\iota : \mathcal{R} \to \mathcal{R}$, one identifies $a \in \mathcal{R}$ with $\iota(a) \in \mathcal{R}$, thus views \mathcal{R} as a subset of \mathcal{R}. One gets identifications:

$$0_\mathcal{R} = (0_\mathcal{R} - 0_\mathcal{R}) = 0_\mathcal{R}, \quad 1_\mathcal{R} = (1_\mathcal{R} - 0_\mathcal{R}), \quad a = \iota(a) = (a-0_\mathcal{R})$$

Notice that under these identifications one has: $\iota(a) - \iota(b) = (a-b) = a - b$ for all $a, b \in \mathcal{R}$ (WHY).