Math 371 / Problem Set 4 (2 pages)

- **Study/read:**
 - Ch. 7, 8, 9 of *Abstract Algebra* by Dummit–Foote.
 - Ch. IV, 18-23, Ch. V, 26-27 of *Abstract Algebra* by Fraleigh.

(!) Make sure that you understand perfectly the definitions, examples, theorems, etc.

- **Solve the problems below:**

1) Let \(R \) be a finite commutative ring, \(1 \neq 0 \). Show that every element of \(R \) is either invertible or a zero divisor.

2) Answer/prove/disprove the following:
 a) Let \(R := \mathbb{Z}/60\mathbb{Z} \) and \(D \subset R \) be the multiplicative system \(D \) generated by \(3, 4 \). What is \(D^{-1}R \)?
 b) Every ring of fractions of \(\mathbb{Z}/m\mathbb{Z} \) is isomorphic to \(\mathbb{Z}/m_1\mathbb{Z} \) for some \(m_1 \).
 c) The same question for an abstract ring \(R \) in which every element is either a zero divisor or invertible.

3) Let \(R = \times_{i \in I} R_i \) be the product of a family of rings \(R_i \) with \(0 \neq 1 \). If \(I \) is finite, prove/disprove the following questions from the class:
 a) \(a \subset R \) is a left/right/two sided ideal iff \(a = \times_{i \in I} a_i \) with \(a_i \subset R_i \) left/right/two sided ideals.
 - For \(a \subset R \) a two sided ideal, how does the factor ring \(R/a \) relate to the factor rings \(R/a_i \), \(i \in I \)?
 b) \(R \) is commutative iff \(R_i \) is commutative for all \(i \in I \). Further let \(R_i \) be commutative. Then one has:
 - \(a \subset R \) is a prime ideal iff there exists \(i_0 \in I \) s.t. \(a = \times_{i \in I} a_i \) with \(a_{i_0} \subset R_{i_0} \) prime ideal and \(a_i = R_i \) for \(i \neq i_0 \).
 - What is the factor ring \(R/a \) for \(a \) a prime ideal?
 ● The same questions concerning maximal ideals \(m \subset R \).

(*) The same questions for \(I \) not necessarily finite.

Recall that a map \(N : R \to \mathbb{N} \) on a ring \(R \) is called **multiplicative**, if
\[
N(ab) = N(a)N(b) \quad \text{for all} \quad a, b \in R.
\]

1
4) Prove that the sets R below are subrings of the real or complex numbers, and that the given maps $N : R \rightarrow \mathbb{N}$ are Euclidean multiplicative norms:

a) $R = \mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} | a, b \in \mathbb{Z}\} \subset \mathbb{R}$,
 $N : R \rightarrow \mathbb{N}$ by $N(a + b\sqrt{2}) := |a^2 - 2b^2|$.
 - Are the principal ideals $2R, 3R, 5R, 7R, 17R$ prime ideals?

b) $R = \mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{Z}\} \subset \mathbb{C}$, where i is the 4th root of unity,
 $N : R \rightarrow \mathbb{N}$ by $N(a + bi) := a^2 + b^2$.
 - Are the principal ideals $2R, 3R, 5R, 7R, 17R$ prime ideals?

c) $R = \mathbb{Z}[\zeta_3] := \{a + b\zeta_3 | a, b \in \mathbb{Z}\} \subset \mathbb{C}$, where $\zeta_3^3 = 1$, $\zeta \neq 1$,
 $N : R \rightarrow \mathbb{N}$ by $N(a + b\zeta_3) := |a + b\zeta_3|^2$ is square of the absolute value of the complex number $a + b\zeta_3$.
 - Are the principal ideals $2R, 3R, 5R, 7R, 17R$ prime ideals?

5)* Are there Euclidean norms on $R = \mathbb{Z}[^3\sqrt{5}] := \{a + b\sqrt{5} | a, b \in \mathbb{Z}\} \subset \mathbb{C}$,
 respectively $R = \mathbb{Z}[^3\sqrt{-5}] := \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\} \subset \mathbb{C}$?

6) Prove/disprove the following assertions:
 a) The polynomial ring $\mathbb{Z}[t]$ does not carry any Euclidean norm.
 b) Let R be a domain. Then the polynomial ring $R[t]$ allows an Euclidean norm iff R is a field.
 [Hints: To a): It suffices to show that $\mathbb{Z}[t]$ is not a PID (WHY), etc. To b): Show that if $r \in R$ is not invertible,
 then $(r, t) := \{rx + ty | x, y \in R[t]\}$ is a non-principal ideal (WHY), etc.]

Reading: Study Section 7.6 *The Chinese Remainder Theorem* of Ch. 7 from *Abstract Algebra* by Dummit–Foote.

7) Answer/Prove the following:
 a) The map $\mathbb{Z}/2020\mathbb{Z} \rightarrow \mathbb{Z}/101\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $a + 2020\mathbb{Z} \mapsto (a + 101\mathbb{Z}, a + 4\mathbb{Z})$ is well defined and surjective.
 b) Find all $x \in \mathbb{Z}$ such that $x \equiv 1 (\text{mod } 101)$ and $x \equiv 2 (\text{mod } 5)$.
 c) The map $\phi : \mathbb{Q}[t] \rightarrow \mathbb{Q}^n$, $p(t) \mapsto (p(1), \ldots, p(n))$ is a surjective ring homomorphism. What is Ker(ϕ)?
 - Does the same hold if we replace \mathbb{Q} by \mathbb{Z}?
 d) What is the image of $\mathbb{Q}[t] \rightarrow \mathbb{R}^n$ defined by $p(t) \mapsto (p(\sqrt{a_1}), \ldots, p(\sqrt{a_n}))$,
 where $a_1, \ldots, a_n \in \mathbb{N}$ are relatively prime?