Math 371 / Problem Set 8 (2 pages)

- **Study/read**
 - Ch. 13 of *Abstract Algebra* by Dummit–Foote.
 - Ch. VI, X of *Abstract Algebra* by Fraleigh.

(!) Make sure that you understand the definitions, examples, theorems, etc.

- **Solve the problems below:**

1) Let \(\iota : F \rightarrow E \) be a field isomorphism, and \(\overline{F}/F, \overline{E}/E \) be algebraic closures. For every polynomial \(f(t) = a_n t^n + \cdots + a_0 \in F[t] \), set \(b_i = \iota(a_i) \), and \(g(t) = \iota(f(t)) := b_n t^n + \cdots + b_0 \in E[t] \) be the image of \(f(t) \) under \(\iota \). Prove the following generalizations of assertions proved in the class:

 a) \(\iota : F \rightarrow E \) can be extended to a field morphism \(\overline{\iota} : \overline{F} \rightarrow \overline{E} \).

 b) Every extension \(\overline{\iota} : \overline{F} \rightarrow \overline{E} \) maps the splitting field \(F_f \subset \overline{F} \) of \(f(t) \) isomorphically to the splitting field \(E_g \subset \overline{E} \) of \(g(t) \).

 c) Deduce from this that every extension \(\overline{\iota} : \overline{F} \rightarrow \overline{E} \) is an isomorphism.

2) Find the degree, a basis of \(F' \mid F \), and a generator, in the following cases:

 a) \(F = \mathbb{Q} \) and
 i) \(F' = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \); respectively \(F' = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6}) \).
 ii) \(F' = \mathbb{Q}(\zeta_8, \zeta_{12}) \); respectively \(F' = \mathbb{Q}(\sqrt{5}, \zeta_5) \), where \(\zeta_n := e^{2\pi i n} \) denotes the first \(n \)th root of unity.

 b) Same questions over the field \(F = \mathbb{R} \).

 c) \(F = \mathbb{F}_5 \), and \(F' = \mathbb{F}(\sqrt{-1}, \sqrt{3}) \).

3) Give concrete descriptions of the splitting fields of the following polynomials (i) \(f(t) = t^3 - 6 \); (ii) \(f(t) = t^4 + t^2 + 1 \); (iii) \(f(t) = t^n - 2 \) over each of the fields: a) \(F = \mathbb{Q} \); b) \(F = \mathbb{F}_2 \); c) \(F = \mathbb{R} \).

4) **Frobenius endomorphism.** For an arbitrary field \(F \) prove:

 a) If \(F \) has characteristic \(\text{Char}(F) = p > 0 \), then \(\text{Frob}_p : F \rightarrow F, x \mapsto x^p \) is a field morphism, called the **Frobenius endomorphism**.

 b) For \(n > 1 \), define \(\varphi_n : F \rightarrow F \) by \(x \mapsto x^n \). Then \(\varphi_n \) is a field morphism iff \(n = p^e \) is some \(e \in \mathbb{N} \) and \(p = \text{Char}(F) \); equivalently, \(\varphi_n = \text{Frob}^e \).

Definition. A field \(F \) is called **perfect**, if either \(\text{Char}(F) = 0 \), or \(\text{Char}(F) = p > 0 \), and \(\text{Frob}_p : F \rightarrow F \) is an isomorphism.
Cyclotomic field extensions. Recall that given a field F, and $n > 0$, an element $a \in F$ is called a (primitive) nth root of unity, if $a^n = 1$ (and $n > 0$ is minimal with that property). For instance, $-1 \in \mathbb{C}$ is a 4th root of unity, but is not a primitive one, whereas $i := e^{2\pi i/4}$ is a primitive 4th root of unity in \mathbb{C}.

5) Let F be an arbitrary field, $F'|F$ an algebraic extension of F, and $n > 0$ a natural number. Prove in all detail the assertions from the class:
 a) $\mu_{F,n} := \{a \in F | a^n = 1\}$ is a cyclic subgroup of F^\times of order dividing n.
 b) If $p = \text{Char}(F) > 0$, and $n = n'p^e$ with $\gcd(p, n') = 1$, then $\mu_{F,n} = \mu_{F,n'}$.
 c) Let $F_n \subset F$ be the splitting field of $t^n - 1 \in F[t]$. Then $F_n = F(\mu_{F,n})$.

Terminology. The above F_n is called the nth cyclotomic extension of F.

Finite fields. Let F be a finite field. Then $\text{Char}(F) = p > 0$ iff \mathbb{F}_p is the prime field of F (WHY), and if so, $F|\mathbb{F}_p$ is a finite extension (WHY).

6) Let $F|\mathbb{F}_p$ be a finite field extension, and $m := [F : \mathbb{F}_p]$. Prove the following:
 a) F^\times consists of roots of unity.
 • Precisely, $F^\times = \mu_{F,n}$, where $n = p^m - 1$.
 b) Hence F is the splitting field of $t^{p^m} - t \in \mathbb{F}_p[t]$, and therefore all finite extension of \mathbb{F}_p of degree m are isomorphic.
 c) Finally, the splitting field of $t^{p^m} - t \in \mathbb{F}_p[t]$ is a finite extension of \mathbb{F}_p of degree m.

Notation: The typical finite extension of \mathbb{F}_p of degree m is denoted \mathbb{F}_{p^m}, and is called the finite field with p^m elements.

Note: $\mathbb{Z}/p^m\mathbb{Z}$ is a ring with p^m elements, but for $m > 1$, this is not a field!

7) Give a list of rings R having either 4 or 9 elements, such that any ring R' with either 4 or 9 elements is isomorphic to one precisely one R on the list.