Hilbert Decomposition Theory

Recall that B is a commutative ring with 1_R, $G \subseteq \text{Aut}(B)$ is a profinite group acting continuously on B endowed with the discrete topology, and $A = B^G$ is the point wise fixed subring of B. Then $B|A$ is an integral ring extension (WHY), hence $\text{Spec}(B) \to \text{Spec}(A)$ is surjective (WHY). Let \mathcal{S} denote the set of finite subsets $\Sigma \subseteq B$ such that $G(\Sigma) = \Sigma$, and consider the partial ordering \geq on \mathcal{S} defined by $\Sigma'' \geq \Sigma' \iff \Sigma'' \supseteq \Sigma'$. Let $B_\Sigma := A[\Sigma] \subset B$ be viewed as an subextension of $B|A$, and consider the canonical projections

$$\pi : \text{Spec}(B) \xrightarrow{\rho_\Sigma} \text{Spec}(B_\Sigma) \xrightarrow{\sigma_\Sigma} \text{Spec}(A), \ q \mapsto q_\Sigma \mapsto p, \text{ and fibers } X_p \to X_{\Sigma, p} \to \{p\}$$

Finally, let $I_q \triangleleft D_q$ and $I_{q_S} \triangleleft D_{q_S}$ be the inertia/decomposition groups.

1) Prove the assertions from the class:
 a) $\forall \Sigma' \subset B$ finite $\exists \Sigma \in \mathcal{S}$ s.t. $\Sigma' \subset \Sigma$, hence $B = \cup_\Sigma B_\Sigma, \ q = \cup_\Sigma q_\Sigma$.
 b) $N_\Sigma := \{\sigma \in G | \sigma|_{B_\Sigma} = \text{id} \} \triangleleft G$ is an open normal subgroup in G.
 c) $G_\Sigma := G|_{B_\Sigma} \cong G/N_\Sigma$ canonically, and G_Σ is finite and acts on B_Σ, and $B_\Sigma^{G_\Sigma} = A$.
 d) $(G_\Sigma)^\Sigma$ is a canonically a projective system, and $G = \varprojlim G_\Sigma$ canonically.

2) Complete the proofs of the assertions from the class:
 a) $D_q = \varprojlim_{\Sigma} D_{q_\Sigma}$, $I_q = \varprojlim_{\Sigma} I_{q_\Sigma}$, and $X_{\Sigma, p} \cong G_\Sigma/D_{q_\Sigma}$ as G_Σ-space, $X_p \cong G/D_q$ as G-space.
 b) $X_{\Sigma, p}$ are finite discrete spaces in the Zariski topology, $(X_\Sigma)^\Sigma$ is canonically a projective system, and $X_p = \varprojlim_{\Sigma} X_{\Sigma, p}$ as topological spaces endowed with the Zariski topology.
 c) The G acts continuously on X_p, and $X_p \cong G/D_q$ as topological G-spaces.

3) Prove that for the ring extension $B|A$ the going down holds.

From now on, suppose that B is an integrally closed domain, hence $A = B^G$ is integrally closed (WHY), and $K = \text{Quot}(A) \subseteq \text{Quot}(B) = L$ is a Galois extension with $G = \text{Gal}(L|K)$ (WHY). For subextensions $L'|K$ of $L|K$, set $B' = B \cap L'$, $q' := L' \cap q$. Thus if $G' = \text{Gal}(L|L')$, then $B' = B^{G'}$ is the integral closure of A in L'.

4) Complete the proofs of the assertions from the class:
 a) $B^D | A$ is the minimal subextension $B'|A$ of $B|A$ such that $|X_{q'}| = 1$, and further one has: $\kappa(q^D) = \kappa(p)$, $q^D_{q'} = p B^D_{q'}$.
 b) $B^I | A$ is the maximal subextension $B'|A$ of $B|A$ such that $|X_{p'}| = 1$ and further satisfies: $\kappa(q^I) | \kappa(p)$ is the separable part of $\kappa(q) | \kappa(p)$, and $q^I_{q'} = p B^I_{q'}$.

Henselization

Recall the definition of the Henselization A^h, m^h of a local ring A, m. Suppose that A is an integrally closed domain, $K = \text{Quot}(A)$, and $A^s \subset K^s$ be the integral closure of A in
a separable closure K^s of K. Further, let $m^s \in X_m$ be a prime ideal of A^s above m, and $K^D \subset K^s$ be the decomposition field of m and $A^D \subset A^s$, $m^D \subset m^s$ be correspondingly defined. Finally, denote $m^h := m^D_v \subset A^D_v =: A^h$.

5) Study the proof of the following famous and very useful:

Theorem. A^h, m^h be the Henselization of A, m.

Hilbert Decomposition Theory for Valuations

Let O, m be the valuation ring/ideal of K, $L|K$ be a Galois extension, $G = \text{Gal}(L|K)$, and $\bar{O} \subset L$ be the integral closure of O in L. Let x_v be the set of prolongations $w|v$ of v to L, and $X_m \subset \text{Spec}(\bar{O})$ be the fiber of $\text{Spec}(\bar{O}) \rightarrow \text{Spec}(O)$ above m.

6) Complete the proofs of the following assertions from the class:
 a) $X_v \rightarrow X_m$, $m_w \mapsto n_w := m_w \cap \bar{O}$ is a bijection.
 b) $D_{n_w} = \{\sigma \in G \mid w \circ \sigma = w\} = \{\sigma \in G \mid w(x) \geq 0 \Rightarrow w(\sigma x - x) \geq 0\}$
 c) $I_{n_w} = \{\sigma \in G \mid w(x) \geq 0 \Rightarrow w(\sigma x - x) > 0\}$

Terminology/Notation: Denoting by $I := I_w \triangleleft D := D_w \subset G$ the inertia/decomposition groups of w in $G = \text{Gal}(L|K)$, the corresponding fixed fields $L^D \subset L^I$ are called the decomposition/inertia (sub)fields of w in $L|K$ and/or $\text{Gal}(L|K)$. In particular, if $w|w^I|w^D|v$ are the corresponding prolongations of v, by Problem 4) above one has:

- L^D is the minimal subextension L' of L such that $v' := w|L'$ satisfies $|X_{v'}| = 1$, and further one has: $\kappa(w^D) = \kappa(v)$, $m_{w^D} = m_vO_{w^D}$.
- L^I is the maximal subextension L' of L such that $v' := w|L'$ satisfies $|X_{v'}| = 1$ and further: $\kappa(w')|\kappa(v)$ is separable, and $m_{w'} = m_vO_{w'}$.

The ramification group

In the previous notation, let $w \in X_v$ be fixed, $\kappa := \kappa(w) = O_w/m_w$ be the residue field of w, and $\mu_\kappa \leq \kappa^x$ be the group of roots of unity in κ. In particular, since μ_κ consists of separable elements over $\kappa(v)$, one has $\mu_\kappa \leq \kappa(w^I)$. Recall that in the above notation,

$$V_w := \{\sigma \in G \mid w(x) \geq 0 \Rightarrow w(\sigma x - x) > w(x)\}$$

is called the ramification group of $w|v$. The fixed field L^v of $V := V_w$ in L is called the ramification field of w in L, and since $V \subset I$, one has: $\kappa(w')|\kappa(w^I)$ is purely inseparable (WHY).

7) Prove the following assertions (some from the class):
 a) If $w' := w \circ \sigma \in X_v$ for some $\sigma \in G$, then $V_{w'}$ and V_w are conjugated under σ.
 b) $V_w \leq I_w$ is a normal subgroup in both I_w and D_w.

Functorial behavior. Let $K'|K$ be a subextension of $L|K$, $G' := \text{Gal}(L|K')$, $v' := w|_{K'}$.

 c) One has:
- $V_{w|v'} = V_w \cap G'$.
- If $K'|K$ is Galois, one has an exact sequence: $1 \rightarrow V_{w|v'} \rightarrow V_w \rightarrow V_{w|v} \rightarrow 1$.

The canonical pairing

8) Define $\psi : I_w \times L^\times \to \kappa^\times$, $(\sigma, x) \mapsto \sigma(x)/x \mod m_w$. Prove the following:
 a) ψ is a well defined pairing of groups, and its image lies in $\mu \subset \kappa(w')$.
 b) One has $V_w \subset \ker(\psi)$ and $O_w^\times \cdot K^\times \subset \ker(\psi)$.

- Hence since $wL = L^\times/O_w^\times$, $vK = K^\times/O_v^\times$, one gets a canonical pairing of groups
 $I_w/V_w \times wL/vK \to \mu \subset \kappa(w')$

Finally, recalling that wL/vK is an abelian torsion group (WHY), let $wL(p), wL' \subset wL$ be the preimages under $wL \to wL/vK$ of the p^∞-torsion, respectively prime-to-p torsion subgroups of wL/vK. Then $wL(p) + wL' = wL$ and $wL(p) \cap wL' = wK$ (WHY).

9) Study the proof of the following fundamental fact:

Theorem. In the above notation, the pairing ψ gives rise to a perfect pairing

$$\overline{\psi} : I_w/V_w \times wL/wL(p) \to \mu$$

of the profinite group I_w/V_w and the discrete torsion group $wL/wL(p)$. Further, recalling the ramification field L' of w, setting $w' := w|_{L'}$, the following hold:

- $wL' = w' L'$, thus $I_w/V_w = I_w' = \text{Hom}(w' L'/vK, \mu_w)$ is the Pontryagin dual of $w' L'/vK$.
- $\kappa(w') = \kappa(w')$, the exact sequence $1 \to I_{w'} \to D_{w'} \to \text{Gal}(\kappa(w')|\kappa(v)) \to 1$ is split, and $\text{Gal}(\kappa(w')|\kappa(v))$ acts on $I_{w'} = \text{Hom}(w' L'/vK, \mu_w)$ canonically.
- For every finite subextension $L' | K$ of $L' | K$ and the restriction $w' := w|_{L'}$ one has: The ramification index $e(w'|v) := (v' L'/vK)$ is prime to p, $\kappa(w')|\kappa(v)$ is separable, and if $L' \subset L'$, the fundamental equality holds:

$$[L' : L''] = e(w'|w'') \cdot [\kappa(w') : \kappa(w'')]$$

Terminology. $L' | K$ is called the **tame subfield** of $L|K$ with respect to w.

Question. What should it mean that v is tamely ramified in a subextension $L' | K$ of $L|K$?

10) Let \mathcal{V} be a set of valuations of K, and $L|K$ be a Galois extension. Prove:

a) There exists a **unique maximal subextension** $L'|K$ of $L|K$ such that for all $v \in \mathcal{V}$ are tamely ramified in $L'|K$.

b) Moreover, $L'|K$ is a Galois extension.