4) To every set \(f : X \to Y, \) \(g : Y \to Z \) be a maps of sets.
 a) Show that if \(f \) and \(g \) are injective, then so is \(g \circ f \).
 b) Formulate the converse assertion to a), and prove or disprove it.
 c) Show that if \(f \) and \(g \) are surjective, then so is \(g \circ f \).
 d) Formulate the converse assertion to c), and prove or disprove it.
 e) Show that if \(f \) and \(g \) are bijective, then so is \(g \circ f \).
 f) Formulate the converse assertion to a), and prove or disprove it.

2) Let \(X, Y \) be arbitrary sets, and \(\mathcal{P}(X) \), respectively \(\mathcal{P}(Y) \) denote their power sets. Let further \(f : X \to Y \) be a mapping of sets. Define maps as follows:

\[
f_* : \mathcal{P}(X) \to \mathcal{P}(Y), \quad f^* : \mathcal{P}(Y) \to \mathcal{P}(X)
\]

by \(f_*(A) := f(A) \) the image of \(A \subseteq X \) by \(f \); respectively \(f^*(B) := f^{-1}(B) \) the preimage of \(B \subseteq Y \) under \(f \).

Prove or disprove each of the following assertions:

a) \(f \) is injective \iff \(f_* \) is injective. Respectively: \(f \) is surjective \iff \(f_* \) is surjective.

b) The same assertions as at a) above, but for \(f^* \) instead of \(f_* \).

c) \(f \) is bijective \iff \(f^* \) is bijective. Respectively: \(f \) is bijective \iff \(f_* \) is bijective.

d) \(f^* \) is compatible w. intersection, i.e. \(f^*(A \cap B) = f^*(A) \cap f^*(B) \) for all \(A, B \subseteq Y \).

 Respectively: \(f \) is compatible w. union, i.e. \(f^*(A \cup B) = f^*(A) \cup f^*(B) \)

 e) \(f_* \) is compatible w. intersection, i.e. \(f_*(A \cap B) = f_*(A) \cap f_*(B) \).

 Respectively: \(f \) is compatible w. union, i.e. \(f_*(A \cup B) = f_*(A) \cup f_*(B) \) for all \(A, B \subseteq Y \).

3) Let \(X \) be an arbitrary set, and \(\mathcal{P}(X) \) its power set. For every \(A \in \mathcal{P}(X) \), we define a map \(\chi_A : X \to \{0, 1\} \) by \(\chi_A(x) = 1 \) if \(x \in A \), and \(\chi_A(x) = 0 \) if \(x \notin A \). The function \(\chi_A \) is called the characteristic function of \(A \).

 Prove the following:

 a) Let \(\mathcal{F}_X \) be the set of all the functions from \(X \) to \(\{0, 1\} \). Then the map \(f : \mathcal{P}(X) \to \mathcal{F}_X \) defined by

\[
A \mapsto \chi_A
\]

 is compatible. Respectively:

b) The characteristic functions have the property: For all \(A, B \subseteq X \) one has: \(\chi_{A \cap B} = \chi_A \cdot \chi_B \), and

\[
\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B},
\]

 where “+” and “−” are the usual addition and multiplication in \(\mathbb{N} \).

4) To every set \(X \) we attach the symbol \(|X| \), called the cardinality of \(X \). (Intuitively, \(|X| \) is a kind of set theoretic “size” of \(X \).) We say by definition that \(|X| \leq |Y| \) if there exist injective maps \(f : X \to Y \). And we will say that \(|X| < |Y| \) if the following holds: \(|X| \leq |Y| \) and \(|Y| \neq |X| \). Prove or disprove the following:

a) If \(|X| \leq |Y| \) and \(|Y| \leq |Z| \), then \(|X| \leq |Z| \).

b) \(|X| \leq |Y| \) \iff there exist surjective maps \(g : Y \to X \).

 And \(|X| \leq |Y| \) and \(|Y| \leq |X| \) \iff there exist bijective maps \(f : X \to Y \).

c) For every set \(X \) one has: \(|X| < |\mathcal{P}(X)| \).

Logical deduction

5) Recall the definition of the limit of a function at a point. And recall that we say that function \(f : D \to \mathbb{R} \) on some open interval \(D \) is continuous at \(a \in D \) if \(\lim_{x \to a} f(x) = f(a) \). Show the following:

a) If \(\lim_{x \to a} f(x) = \mu \) and \(\lim_{x \to a} g(x) = \nu \), then \(\lim_{x \to a} \left(f(x)/g(x) \right) = \mu/\nu \), provided \(\nu \neq 0 \).

b) \(f \) is continuous at \(a \) \iff the following holds: Given any open interval \(J \) with \(f(a) \in J \), its preimage \(f^{-1}(J) \) contains some open interval \(I \) with \(a \in I \).