Math 360 - Advanced Calculus / Problem Set 4

Real numbers
Recall that given non-empty subsets \(X, Y \subset \mathbb{R} \), we defined \(X + Y := \{ x + y \mid x \in X, y \in Y \} \), and call \(X + Y \) “the sum” of \(X \) and \(Y \); and \(X \cdot Y := \{ xy \mid x \in X, y \in Y \} \), and call \(X \cdot Y \) “the product” of \(X \) and \(Y \).

1) Answer the questions below:
 a) Describe the following sums of sets: \([0, 1] + \mathbb{Z}\), \((0, \infty) + (-\infty, 0)\), \([a, b] + \mathbb{Q}\), \([-2, 1] + [0, 3)\), where \([a, b]\) and \([a, b)\), etc., denote intervals.
 b) The same problem for \(X + Y \) replaced by \(X \cdot Y \).

2) Let \(I \subset \mathbb{R} \) be the set of the irrational numbers. Prove or disprove:
 a) \(a \in I \iff \frac{1}{2}a - 3 \in I; \ b + 1 \in I \iff b^2 - 1 \notin \mathbb{Q} \).
 b) If \(a^5 + 1 = \frac{1}{4} \), then \(a \in I \).
 c) If \(y + z \in I \) and \(yz \in I \), then \(y, z \in I \).

3) Prove or disprove the following:
 a) \(X \) and \(Y \) are both bounded \(\iff \) \(X + Y \) is bounded.
 b) sup \(X \) and sup \(Y \) do both exist \(\iff \) sup \((X + Y) \) does exist. What is the relation between these numbers, if they all exist.
 c) max \(X \) and max \(Y \) do both exist \(\iff \) max \((X + Y) \) does exist. What is the relation between these numbers, if they all exist.
 d) \(X \) and \(Y \) are (bounded) intervals \(\iff \) \(X + Y \) is a (bounded) interval.

4) The questions as at Problem 2 above for \(X + Y \) replaced by \(X \cdot Y \).

Sequences
In the problems 5), 6), 7) find the values of \(a \) for which the resulting sequence \((x_n)\) is:
 a) Monotone.
 b) Bounded.
 c) Cauchy, respectively convergent.

5) For a given (rational, or real) number \(a \), define the sequence \((x_n)\) by: \(x_0 := a \), and \(x_{n+1} = x_n^2 - x_n + 1 \) for all \(n \geq 0 \).

6) For a given (rational, or real) number \(a \), define the sequence \((x_n)\) by: \(x_0 := a \), and \(x_{n+1} = \sqrt{|a^2 - x_n^2|} \) for all \(n \geq 0 \).

7) For a given (rational, or real) number \(a \), define the sequence \((x_n)\) by: \(x_0 := a \), and \(x_{n+1} = \sqrt{|2 - x_n^2|} \) for all \(n \geq 0 \).

8) Recall the following definitions:
 - The harmonic series is the symbol \(\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots \)
 - The alternating harmonic series is the symbol \(\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} = -1 + \frac{1}{2} - \frac{1}{3} + \ldots \)
 a) What could be the meaning of the above symbols?
 b) Define \(\sigma_n := \sum_{k=1}^{n} \frac{1}{k} \). Prove or disprove: \((\sigma_n)\) is a Cauchy sequence.
 c) Define \(\rho_n := \sum_{k=1}^{n} (-1)^k \frac{1}{k} \). Prove or disprove: \((\rho_n)\) is a Cauchy sequence.