Math 360 - Advanced Calculus / Problem Set 10

Homeomorphisms
1) Let \(f : X \to Y \) be a continuous function. Show that the following are equivalent:
 i) \(f \) is a homeomorphism.
 ii) \(f \) is bijective, and for every open subset \(U \subseteq X \) one has: \(f(U) \) is open in \(Y \).
 iii) \(f \) is bijective, and for every closed subset \(A \subseteq X \) one has: \(f(A) \) is closed in \(Y \).
2) Let \(f : X \to Y \) be a bijective continuous function. Suppose that \(X \) is compact, and \(Y \) is Hausdorff. Show that \(f \) is a homeomorphism.
3) Let \(I, J \subseteq \mathbb{R} \) are intervals, and \(f : I \to J \) be a continuous bijective function. Prove or disprove:
 a) \(f : I \to J \) is a homeomorphism.
 b) \(I \) is (half) open/closed \(\iff \) \(J \) is so.
 c) \(f \) is strictly monotone.
4) Prove or disprove the following:
 a) The open interval \(I = (-1, 1) \) is homeomorphic to \(\mathbb{R} \).
 b) More general, any two open non-empty intervals \(I, J \subseteq \mathbb{R} \) are homeomorphic.
 c) A subspace \(X \subseteq \mathbb{R} \) is homeomorphic to \(\mathbb{R} \) \(\iff \) \(X \) is an open interval.
5) Prove or disprove the following:
 a) The open cube \(K = I \times I = \{(x, y) \mid -1 < x, y < 1\} \) is homeomorphic to \(\mathbb{R}^2 \).
 b) Every open cube \(I \times J \), with \(I, J \subseteq \mathbb{R} \) open non-empty intervals, is homeomorphic to \(\mathbb{R}^2 \).
 c) What are the generalizations of the assertions above for \(\mathbb{R}^n \)?
6) Google the term “space-filling curve” and learn about that. Prove or disprove: The interval \(I = (-1, 1) \) is not homeomorphic to the open cube \(K = I \times I \). How do you explain your answer versus space-filling curves?

Metric spaces
7) Let \(X', d' \) and \(X'', d'' \) be metric spaces. we set set \(X := X' \times X'' \). Prove or disprove that the following maps on \(X \times X \) are distances:
 a) \(d_1 : X \times X \to \mathbb{R} \), by \(d_1((x', x''), (y', y'')) = d'(x', y') + d''(x'', y'') \).
 b) \(d_E : X \times X \to \mathbb{R} \), by \(d_E((x', x''), (y', y'')) = \sqrt{d'(x', y')^2 + d''(x'', y'')^2} \).
 c) \(d_{\text{max}} : X \times X \to \mathbb{R} \), by \(d_{\text{max}}((x', x''), (y', y'')) = \max\{d'(x', y'), d''(x'', y'')\} \).
8) Answer the following:
 a) Draw the unit balls in \(\mathbb{R}^n \), for \(n = 1, 2, 3 \), for the distances \(d_1 \), the Euclidean distance \(d_E \), and the distance \(d_{\text{max}} \).
 b) Make an educated guess: Do the distance map \(d_1 \), the Euclidean distance \(d_E \), and the distance \(d_{\text{max}} \) define the same topology on \(\mathbb{R}^n \)?