Math 371 / Problem Set 5

Modules and vector spaces (continued)

1) Let M be an R-module, and $N \subseteq M$ be an R-submodule. We set $\overline{M} := M/N$ and denote its elements by $\overline{x} := x + N$ for all $x \in M$. Suppose that $x_1, x_2 \in N$ are generators of N, and let $y_1, y_2 \in M$ be some fixed elements. Prove or disprove the following:
 a) If (x_1, x_2, y_1, y_2) is a systems of generators of M, then so is $(\overline{y}_1, \overline{y}_2)$ for \overline{M}.
 b) If $\overline{y}_1, \overline{y}_2$ generate \overline{M}, then x_1, x_2, y_1, y_2 generate M.

2) Prove or disprove the following:
 a) Let F be a field. Then $(F, +)$ and $(F^2, +)$ are not isomorphic as F-vector spaces.
 b) Is the same true for $(R, +)$ and $(R^2, +)$ viewed as R-modules, where R is a ring with 1_R?
 c) Is the same true if we replace F^2 by F^n and R^2 by R^n with $n > 1$?

3) Let $f : M \rightarrow N$ be an R-module homomorphism. Let $X \subseteq M$ be a non-empty subset, and $Y = f(X)$ be its image in N. Prove or disprove the following:
 a) If $x = \sum_i a_i x_i$ is an R-linear combination of elements of X, then $f(x)$ is an R-linear combination of elements of Y.
 b) $f(\langle X \rangle_R) = \langle Y \rangle_R$.
 c) If M is finitely generated, then so is $\text{Im}(f)$.

4) Let M be an R-module, and Σ be a non-empty set. Let $\mathcal{F}(\Sigma, M)$ be the set of all the maps $f : \Sigma \rightarrow M$. Then $\mathcal{F}(\Sigma, M)$ is an abelian group w.r.t. the addition of functions (WHY?), and we define an outer R-multiplication on $\mathcal{F}(\Sigma, M)$ by: $(rf) : \Sigma \rightarrow M, x \mapsto rf(x)$, for all $r \in R$, and $f, g \in \mathcal{F}(\Sigma, M)$.
 a) Show that in this way, $\mathcal{F}(\Sigma, M)$ becomes an R-module.
 b) Show that $\mathcal{F}(\Sigma, M)$ is a finitely generated R-module iff Σ is finite.

5) Let F be a field, and $\mathcal{P}ol_n \subseteq F[X]$ be the set of all the polynomials of degree $\leq n$. Prove or disprove the following:
 a) $\mathcal{P}ol_n$ is an F-vector subspace of $(F[X], +)$.
 b) $(1_F, \ldots, 1_F + \ldots + X^n)$ is an F-basis of $\mathcal{P}ol_n$.
 c) For every finitely generated F-vector subspace $V \subseteq F[X]$, there exists n such that $V \subseteq \mathcal{P}ol_n$.

6) Which of the above assertions remain true if we replace F and $F[X]$ by an arbitrary ring R, respectively $R[X]$, and $V \subseteq F[X]$ a finitely generated R-submodule M of $(R[X], +)$.

7) Let R be an arbitrary ring with 1_R.
 a) Prove that for all $n > 0$ the following R-modules are isomorphic:
 i) R^n with the coordinate wise addition.
 ii) $\mathcal{P}ol_{n-1}$ with the usual addition of polynomials.
 iii) $\mathcal{F}(\Sigma, R)$, where Σ is a finite set with $|\Sigma| = n$.
 b) Is the same true if R has no 1_R?

8) Let M, N be R-modules, and let $\text{Hom}_R(M, N)$ be the set of all the R-module homomorphisms $f : M \rightarrow N$, hence $\text{Hom}_R(M, N) \subseteq \mathcal{F}(M, N)$ as a set. Prove or disprove:
 a) $\text{Hom}_R(M, N)$ is an R-submodule of $\mathcal{F}(M, N)$.
 b) Suppose that (x_1, \ldots, x_n) is a system of generators of M. Then for $f, g \in \text{Hom}_R(M, N)$ one has: $f = g$ iff $f(x_i) = g(x_i)$, $i = 1, \ldots, n$.
 c) Suppose that M and N are finitely generated (having m, respectively n, generators). Then $\text{Hom}_R(M, N)$ is a finitely generated R-module (having nm generators).