Math 371 / Problem Set 6

1) Let M be an R-module, and recall that for a subset $T \subseteq M$, we denote by $<T>_R$ the R-submodule of M generated by T. Let $X, Y \subseteq M$ be subsets. Prove or disprove the following:
 a) $< <X>_R>_R = <X>_R$.
 b) If $X \subseteq Y$, then $<X>_R \subseteq <Y>_R$. Is the converse true?
 c) $<X>_R + <X>_R = <X \cup Y>_R$.

2) Let M be an R-module. An element $x \in M$ is called a torsion element if $rx = 0$ for some $r \neq 0$. Let $M_{\text{tors}} := \{x \in M \mid x$ is torsion element $\}$. Prove or disprove the following:
 a) M_{tors} is an R-submodule of M.
 From now on, suppose that R be an integral domain.
 b) Let $x \in M$ be such that $rx \in M_{\text{tors}}$ for some $r \neq 0$. Then $x \in M_{\text{tors}}$.
 c) Let $\overline{M} := M/M_{\text{tors}}$. Then $(\overline{M})_{\text{tors}} = \{0\}$.

3) Answer the following:
 a) What is the torsion submodule for the \mathbb{Z}-modules $(\mathbb{Z}, +)$, $(\mathbb{Z}/35\mathbb{Z}, +)$?
 b) Suppose that R is an integral domain, and M, N are R-modules. Is then $(M \times N)_{\text{tors}} = M_{\text{tors}} \times N_{\text{tors}}$? Is the same true if R is not a domain?

- Problems 2–9 at the end of Section 4.2, Chapter 4, of Herstein’s book *Topics in Algebra*.