Math 512 / Problem Set 9

1) Let V be an F-vector space, and $p(X) ∈ F[X]$ be a non-zero polynomial over F. Let $\phi ∈ \text{End}_F(V)$ be an F-endomorphism of V, and $\psi := p(\phi)$ viewed as F-endomorphism of V.

a) Prove or disprove: If λ is an eigenvalue of ϕ, then $\mu := p(\lambda)$ is an eigenvalue of ψ.

b) Does the converse of assertion a) hold?

2) Let V be an F-vector space, and $\phi, \psi ∈ \text{End}_F(V)$ be F-endomorphisms of V. Prove or disprove the following:

a) There exists an F-basis A of V such that both $A^A_φ$ and $A^A_ψ$ are diagonal iff $\phi \circ \psi = \psi \circ \phi$.

b) What is the corresponding assertion for finitely many F-endomorphisms $φ_1, \ldots, φ_n$ of V?

Language: If there exists A as above, one says that ϕ and $ψ$ are simultaneously diagonalizable.

3) Give thoughts to possible generalizations of the above assertions for F-endomorphisms ϕ of V whose characteristic polynomial $P_φ(X)$ splits in linear factors over F.

4) Consider all the matrices over F whose characteristic polynomial is $P_A(X) = (X − 2)^2(X − 3)^3$.

a) Give all the possible Jordan normal forms for these matrices (a possible hint to problem 3 above?).

b) Does the characteristic of the field F play into the picture?

Language: Recall that for every polynomial $p(X) = a_nX^n + a_{n−1}X^{n−1} + \cdots + a_1X + a_0$ (over an arbitrary commutative ring R with 1_R) one defines the formal derivative $p'(X)$ of $p(X)$ as being the 0 if $n = 0$, i.e., $p(X) = a_0$, and being the polynomial $p'(X) = na_nX^{n−1} + (n−1)a_{n−1}X^{n−2} + \cdots + a_1$, if $n > 0$.

5) Let $D : \text{Pol}_3 → \text{Pol}_3$ be the F-linear map defined by the formal derivative, and $A := (1, X, X^2, X^3)$ be the standard F-basis of Pol_3.

a) What is the matrix of D in the F-basis A?

b) What is the Jordan normal form of D?

Language: If there exists A as above, one says that D is simultaneously diagonalizable.

6) Let $F = \mathbb{C}$ be the field of complex numbers. Find the Jordan normal form of all the matrices A satisfying:

a) $A^2 = A$, respectively $A^3 = A$.

b) $A^n = I_n$ and $A ∈ F^{n×n}$.

Language: Recall that $\phi ∈ \text{End}_F(V)$ is called nilpotent, if there exists some n such that $\phi^n = 0$ in $\text{End}_F(V)$.

7) Prove or disprove / answer the following:

a) ϕ is nilpotent iff $P_φ(X) = X^{\dim(V)}$.

b) What are the possible Jordan normal forms for nilpotent F-endomorphisms?

8)* Let $φ ∈ \text{End}_F(V)$ be an endomorphism, and $P_φ(X)$ its characteristic polynomial. Prove or disprove the following: $P_φ(X)$ splits in linear factors over F if and only if there exists $φ_1, φ_0 ∈ \text{End}_F(V)$ such that $φ_1 \circ φ_0 = φ_0 \circ φ_1$, and $φ = φ_0 + φ_1$, and $φ_0$ is diagonalizable and $φ_0$ is nilpotent. If so, are $φ_0, φ_1$ unique?

Language: If $φ_0$ and $φ_1$ as above exist, then $φ = φ_0 + φ_1$ is called the canonical decomposition of $φ$.