1) Let \(K \) be an arbitrary field. For \(n \geq 1 \) we denote by \(\text{GL}_n(k) \) and \(\text{SL}_n(k) \) the group of invertible \(n \times n \) matrices, respectively the ones with determinant 1.

a) For each \(n \) and \(k \) prove or disprove: \(\{1\} \triangleleft \{\pm 1\} \triangleleft \text{SL}_n(k) \triangleleft \text{GL}_n(k) \) is a normal series of \(\text{GL}_n(k) \). In the cases where the answer is positive, determine the factors \(F_i \).

b) For each of these factors \(F_i \) prove or disprove: \(F_i \) is a simple group.

2) Let \(G \) be a finite group, and \(N, M \) be normal subgroups of \(G \) such that \(N \cap M = \{1\} \). Show the following:

a) \(M \) and \(N \) commute element-wise, i.e., \(gh = hg \) for all \(g \in N, h \in M \).

b) In particular, if \(N, M \) together generate \(G \), then \(G \cong N \times M \) canonically.

3) Let \(G \) be a finite group, and for every prime number \(p \) we denote by \(S_p(G) \) a Sylow \(p \)-group of \(G \). (In particular, if \(p \) does not divide the order of \(G \), then by definition we set \(S_p(G) = \{1\} \).) Prove the following assertions made/used in the class:

a) \(S_p(G) \) is a normal subgroup of \(G \) iff \(G \) has a unique Sylow \(p \)-group.

b) \(G \cong \prod_p S_p(G) \) if and only if \(G \) has a unique Sylow \(p \)-group for each \(p \).

4) Let \(G \) be a finite group. Prove or disprove:

a) \(G \) has a unique maximal solvable quotient \(G_{\text{sol}} \).

b) \(G \) has a unique maximal solvable normal subgroup \(G_{\text{sol}} \).

5) Let \(G \) be a finite group. Prove or disprove:

a) \(G \) has a unique maximal nilpotent quotient \(G_{\text{nil}} \).

b) \(G \) has a unique maximal nilpotent normal subgroup \(G_{\text{nil}} \).

Q: Does one get the same answers at 4) and 5) for arbitrary groups \(G \)?

6) An element \(g \) of a group \(G \) is called a non-generator, if for every set \(S \subset G \) one has: If \(S \) does not generate \(G \), then \(S \cup \{g\} \) does not generate \(G \). For a finite group \(G \) prove the following:

a) \(g \in G \) is a non-generator iff \(g \in M \) for all the maximal subgroups \(M \) of \(G \).

Definition The group \(\Phi(G) = \cap M \), where \(M \) runs through all the maximal subgroups of \(G \), is called the Frattini subgroup of \(G \). Thus the set of the non-generators of \(G \) is exactly the Frattini subgroup \(\Phi(G) \) of \(G \).

b) Show that \(\Phi(G) \) is normal in \(G \). What is \(\Phi(G/\Phi(G)) \)?

c) Prove or disprove: \(\Phi(G) \) is a characteristic subgroup of \(G \).

7) Let \(G \) have order \((G : 1) = pq \), with \(p, q \) prime numbers. Prove or disprove (in dependence of the prime numbers \(p \) and \(q \)):

a) \(G \) is solvable.

b) \(G \) is nilpotent.

c) \(G \) is Abelian, respectively cyclic.

Do the answers change radically if \((G : 1) = pqr \), with \(p, q, r \) prime numbers?

8) Let \(p \) be a prime number.

a) If \(G \) is a non-commutative \(p \)-group, then \((G : Z(G)) > p \).

b) Describe the isomorphism types of groups of order \(p^3 \).