Grad Algebra (602) / Problem Set 5

1) Complete the proofs of the following assertions from the course:
 a) Let $f : A \to B$ be an isomorphism of C-algebras, a and ideal of A, and $b := f(a)$. Then b is an ideal of B, and $\overline{f} : A/a \to B/b, x(mod\ a) \mapsto f(x)(mod\ b)$ is an isomorphism of C-algebras.
 b) Explain how to deduce from this the assertion used in the class: Let $\sigma' : M' \to N'$ be a K-isomorphism of subfields of an algebraically closed field extension L of K. Then for $x \in L_{0,M'}$ there exists $y \in L_{0,N'}$ such that σ' prolongs to a K-isomorphism of fields $\sigma'_x : M'(x) \to N'(y)$.

2) Show that the (formal) derivation has the following properties:
 a) Let A be an arbitrary commutative ring with 1_A, and $A[X]$ the polynomial ring in the variable X over A. We define a map $D : A[X] \to A[X]$ by $P(X) = \sum_{i=0}^{n} a_i X^i \mapsto D(P) := \sum_{i=1}^{n} ia_i X^{i-1}$, and call it the (formal) derivation.
 b) The derivation D satisfies the Leibniz rule: $D(PQ) = QD(P) + PD(Q)$.

3) Define inductively: $D^0 = id_{A[X]}$, and $D^{n+1} = D \circ D^n$ for all $n \geq 0$, and set $P^{(n)}(X) := D^n(P)$. For any A-algebra B, and $a \in B$ and $P(X)$ in $A[X]$ show the following:
 a) a is a root of $P(X)$ in B, i.e., $P(a) = 0_B$ in B if and only if $(X - a)$ divides $P(X)$ in the ring $B[X]$.
 b) For $n > 0$ one has: $P(X)$ is divisible by $(X - a)^n$ in $B[X]$ if and only if $P^{(k)}(a) = 0_B$ for $0 \leq k < n$, provided $(n - 1)!$ is not a zero divisor in B.

4) Suppose that $A = K$ is a field. Show that the following conditions for $P(X)$ are equivalent:
 i) $P(X)$ is separable.
 ii) All the roots of $P(X)$ in every (finite) field extension $L|K$ are simple.

5) Now suppose that $P(X) \in K[X]$ is irreducible. Show that the following conditions are equivalent:
 i) $P(X)$ is separable.
 ii) $P'(X) \neq 0_{K[X]}$.

6) Try to prove the following generalization of Problem 5 above: A monic polynomial $P(X) = X^n + \ldots + a_0$ in $A[X]$ is separable if and only if the ideal (P, P') generated by $P(X)$ and $P'(X)$ in $A[X]$ is the whole $A[X]$. (Why is this a generalization of Problem 5?) Is the same true for some/all the non-monic polynomials $P(X)$?

7) Let K be either a finite field or a field of characteristic zero. Show the following:
 a) An irreducible polynomial over K is separable.
 b) A polynomial $P(X)$ over K is separable if and only if all the irreducible factors of $P(X)$ are simple, i.e., $P(X)$ is not divisible by the square of any irreducible polynomial.