Supernatural numbers:

A supernatural number ω is a formal product $\omega = \prod p^{n_p}$, where p runs over all (rational) prime numbers, and the values n_p are each either natural numbers or the symbol ∞. Clearly, every natural number can be viewed as a supernatural number. If $\omega' = \prod p^{n_p'}$ and $\omega'' = \prod p^{n_p''}$ are such numbers, we define their product by $\omega' \omega'' = \prod p^{n_p}$, where $n_p = n_p' + n_p''$ with the rule $a + \infty = \infty$. Remark that this multiplication extends the multiplication of natural numbers. Further we say that ω' divides ω'', written $\omega'/|\omega''$, if $n_p' \leq n_p''$ for all p. Remark that this notion of divisibility extends the one defined for natural numbers.

The supernatural numbers are used to define the “degree” of arbitrary algebraic field extension: Let L/K be a field extension. For every finite sub-extension M/K we let n_p,M be the exponent of p in $[M : K]$; and set $n_p := \sup_{M} (n_{p,M})$. We denote $[L : K] = \prod p^{n_p}$, and call it the degree of L/K. They are also used to define the “order” and/or the index of profinite groups as follows: Let G be a profinite group, and $H \subseteq G$ a closed subgroup. For every open normal subgroup Δ of G, let $\overline{H} \subset \overline{G}$ be the image of H in $\overline{G} := G/H$; and let n_p,Δ be the exponent of p in $([\overline{G} : \overline{H}]$. Finally we set $n_p = \sup_{\Delta}(n_{p,\Delta})$, and denote $(G : H) = \prod p^{n_p}$, and call it the index of H in G. If $H = \{1\}$ is the trivial group, then $|G| := (G : 1)$ is called the order of G.

1) In the above context/notations prove the following:

a) If $H \subseteq G$ is a closed subgroup, then $[H]$ divides $[G]$, and $[G] = (G : H)[H]$. Further, H is open in $G \iff (G : H)$ is a natural number.

b) If M/K is a sub-extension of L/K, then $[L : K] = [L : M][M : K]$. Further, L/K is finite $\iff [L : K]$ is a natural number.

c) Let L/K be a Galois extension, $G = G(L/K)$ its Galois group, and $\text{gal} : F(L/K) \rightarrow G(L/K)$ the Galois correspondence. Show that for all $M \in F(L/K)$ one has: $[L : M] = |\text{gal}(M)|$, and that for all $H \subseteq G(L/K)$ one has: $[L : L^H] = (G : H)$.

Trace, Norm, Discriminants:

2) Let $L = \mathbb{k}[x]$ be a finite field extension of degree $n = [L : K]$. Let $P(X) = \text{Mip}_K(x)$, and $P'(X)$ be its formal derivative. Finally set $A := \{1, x, \ldots, x^{n-1}\}$ —this is a K-basis of L (WHY?).

a) $\text{disc}(A) = \pm N_{L/K}(P'(x))$. What is the precise sign ± 1 in this formula?

b) Supposing that x is separable, compute the reciprocal basis A^* of A.

3) Let $K = \mathbb{Q}$, and L/K be a finite extension (thus L is a number field), $n = [L : K]$.

a) Show that there exists a unique square free integer d_L such that the discriminants of the several bases A of L over K are of the form $\text{disc}(A) = d_L \cdot d_A^2$ for some rational number d_A.

b) For $L = \mathbb{Q}[x]$ with $x = \sqrt{2}$, $x = \sqrt{3}$, $x = \sqrt{5}$, and $A = \{1, x, \ldots, x^{n-1}\}$, find both d_L and d_A.

c) Prove or disprove: If $L \neq \mathbb{Q}$, then $d_L \neq 1$.

d) Prove or disprove: For every $a \in \mathbb{Q}^\times$ there exists a basis A such that $d_A^2 = a^2$.

4) Let L/K be a finite field extension, M/K a sub-extension. For $x \in L$, we set $y = \text{Tr}_{L/M}(x)$, $z = N_{L/M}(x)$. Prove or disprove the following:

a) If x is a primitive element for L/K, then y and/or z are primitive elements of M/K.

b) There exists primitive elements x for L/K such that y and/or z are primitive elements of M/K.

Now suppose that L/K and M/K are Galois and finite. Recall that an element u is called a normal generator, if its conjugates define a K-basis (of the Galois field extension in discussion).

c) If x is a normal generator for L/K, then y and/or z are normal generators of M/K.

d) There exist normal generators x of L/K, such that y and/or z are normal generators of M/K.

Due: Monday, Nov 28, 2005

Grad Algebra (602) / Problem Set 9