Grad Algebra (602) / Problem Set 11

Due: Have fun!!!

Recall that for a group G acting on a set X, and an arbitrary group A, we denote by $A \rtimes_X G$ the semi-direct product $A^X \rtimes G$ w.r.t. the canonical action of G on A^X; and denote $A \rtimes S_n = A^n \rtimes S_n$.

1) Prove or disprove:
 a) The Sylow 2-group S_2 of S_4 is isomorphic to $(\mathbb{Z}/2) \rtimes S_2$.
 b) For some particular values of n—and if so, which are these values, one has: The Sylow 2-group S_2 of S_{2n} is isomorphic to the Sylow 2 group of $(\mathbb{Z}/2) \rtimes S_n$.

2) Give examples of Galois extension L/K of $K = \mathbb{Q}$ such that the following holds:
 a) $G(L/K) \cong (\mathbb{Z}/2) \rtimes S_2$.
 b) $G(L/K) \cong (\mathbb{Z}/2) \rtimes S_3$.

3) Let K be a field, and p be a rational prime number such that $p \neq \text{char}(K)$.
 a) Suppose that $p \neq 2$. Prove or disprove: For all $a \in K$ and $P(X) = X^p - a \in K[X]$ one has: $P(X)$ is reducible over K if and only if $P(X)$ has a root in K, i.e., a is an nth power in K.
 b) Describe the situation in the case $p = 2$.

Resolvents. Let L/K be a cyclic extension, and $G = G(L/K)$ be its Galois group. We fix a generator σ of G, and a normal generator α of L/K such that $\text{Tr}_{L/K}(\alpha) = 1$. (Such normal generators do exist, why?)

a) Suppose that $\text{char}(K)$ does not divide $n = [L : K]$, and that K contains a primitive nth root of unity ζ.
 We set $x := \sum_{k=0}^{n-1} \zeta^{-k} \sigma^k(\alpha)$, and call it a Lagrange resolvent of L/K.
 b) Suppose that $[L : K] = \text{char}(K) = p$. We set $x := \sum_{k=0}^{p-1} (-k) \sigma^k(\alpha)$, and call it an Artin–Schreier resolvent of L/K.

4) Show the following:
 a) In case a) above, one has $\sigma(x) = \zeta x$; and $\text{Mipo}_K(x) = x^n - a$ for some $a \in K$. In other words, L is generated over K by the nth root of some element of K.
 b) In the case b) above, one has $\sigma(x) = x + 1$; and $\text{Mipo}_K(x) = x^p - x - a$ for some $a \in K$. In other words, L is generated over K by the root of an Artin–Schreier polynomial over K.

5) Let L/K be a Galois extension, and $G = G(L/K)$ be its Galois group. For $n \geq 1$ we consider $\mathcal{M}_n(L)$ and $\text{GL}_n(L)$ endowed the G-action defined by acting on the coefficients of the matrices in discussion. Prove the following:
 a) The above action G makes both $(\mathcal{M}_n(L), +)$ and $(\text{GL}_n(L), \cdot)$ into G-groups; even into topological G-groups, when we endow them with the discrete topology.
 b) Show that $H^1(G, \mathcal{M}_n(L)) = 0$ and that $H^1(G, \text{GL}_n(L)) = 0$.

Note: The last assertion is called the Hilbert 90 for GL_n.

6) Let L/K be a finite separable field extension. Let L^n/K be its normal closure (in some fixed algebraic closure of K). Prove or disprove:
 a) If $[L : K] = 8$, and $16 \neq [L^n : K] < 32$, then $L^n = L$.
 b) Same question in the case $[L : K] = 12$.

7) Let L/K be an algebraic extension allowing a tower of sub-extensions $K = L_m < \cdots < L_0 = L$ such that $[L_i : L_{i+1}] = 3$ for all $i = 0, \ldots, m - 1$. Prove or disprove:
 a) If each L_i/L_{i+1} is cyclic, and L^n/K is a normal closure of L/K, then L^n/K is Galois, and $G(L^n/K)$ is a 3-group.
 b) $\text{Aut}(L^n/K)$ is a 2, 3 group, i.e., its order is not divisible by primes $p > 3$.
 c) $\text{Aut}(L^n/K)$ is solvable.