Grad Algebra (Math 603) / Exam

For each of the rings $A = \mathbb{Z}[X]/(12, X^2)$, $B = \mathbb{R}[X, Y]/(X^2 + Y^2)$ and $C = \mathbb{C}[X]$ do the following:

1) Describe the prime spectrum, and the nil-radical.

2) Describe the maximal spectrum, and the Jacobson radical.

3) Describe the zero divisors and the nilpotent elements.

4) Viewing A and B as \mathbb{Z}-algebras, compute $A \otimes_{\mathbb{Z}} B$. And viewing B and C as \mathbb{R}-algebras, compute $B \otimes_{\mathbb{R}} C$.

5) Let R be the ring of fractions of $\mathbb{Q}[X]$ w.r.t. the multiplicative system consisting of the powers of X.

 a) Prove or disprove: R is a \mathbb{Q}-algebra of finite type.

 b) In the case the answer to question a) above is positive, find a Noether basis of R over \mathbb{Q}.

6) Set $R = \mathbb{R}[X, Y](X^2 - Y^3) =: \mathbb{R}[x, y]$, where $x = X \pmod{(X^2 - Y^3)}$ and $y = Y \pmod{(X^2 - Y^3)}$. Prove or disprove:

 a) R is an domain, respectively R is integrally closed.

 b) Let $R_0 := \mathbb{R}[t]$ be the polynomial ring in the variable t over \mathbb{R}. Then there exists a unique ring homomorphism $f : R_0 \rightarrow R$ such that $t \mapsto y$.

 c) If f as above exists, compute the integral closure of R_0 in R.

 d) And if f as above exists, describe the fibers of $f^* : \text{Spec}(R) \rightarrow \text{Spec}(R_0)$.

7) In the notations from above, let \tilde{R} be the integral closure of R in its total ring of fractions. Show the following:

 a) \tilde{R}/R_0 is a quasi-Galois ring extension with automorphism group $\cong C_2$ the cyclic group of two elements.

 b) For each of primes $p_0 = (t)$, $p_1 = (t - 1)$, $p_2 = (t - 2)$ of R_0, find the decomposition group of a prime q_0, q_1, q_2 of \tilde{R} lying above, correspondingly.

 c) Describe the invertible prime ideals of R, respectively \tilde{R}. Are the rings R, respectively \tilde{R}, Dedekind rings?

8) Let A be a commutative ring with 1, p a prime ideal of A, and $\kappa(p)$ the field of fractions of A/p. Prove or disprove:

 a) One always has $A_p/p_p = \kappa(p)$.

 b) One always has $A/p = \kappa(p)$.

 c) For which rings A are the assertions a), b) above true for all prime ideals $p \in \text{Spec}(A)$?

 d) For which rings A there do exist prime ideals p such that the assertions a), b) above are true?