Grad Algebra (Math 603) / Problem Set 11 (two pages)

Algebraic independence / Algebras of f.t. over fields

1) Let $K = \mathbb{F}_2$.
 a) Let $K((t)) = \text{Quot}(K[[t]])$ be the function field of the power series ring in the variable t over K. Show that $x = \sum_n t^nt^n$ is not algebraic over $K(t)$.
 b) Show that $\text{tr.deg}(K((t))|K)$ is uncountable.
 c) Is the same true for an arbitrary base field K?

2) Let K be an arbitrary field.
 a) Find a Noether basis for $R := K[t^{-1}, (t^2 - 1)^{-1}]$, where t is transcendental over K.
 b) Same question for $R := K[X_1, X_2, X_3]/(X_1X_2^2 + X_2X_3^3 - 6)$. And find the integral closure of R in its total ring of fractions.

3) Let R be a valuation ring. Prove the following:
 a) Krull.dim($R) \leq 1 \iff \Gamma_R$ is embeddable into $(\mathbb{R}, +)$ as an ordered group.
 b) R is Noetherian $\iff R$ is a PID $\iff R$ is a UFD $\iff \Gamma_R \cong (\mathbb{Z}, +)$.
 c) If Krull.dim($R) > 1$, then R does not satisfy the conclusion of Krull’s Principal Ideal Theorem.

Example: Let K_0 be any base field, $K_1 := K_0((t_1))$ the Laurent power series ring over K_0 in the variable t_1, and $K_2 := K_1((t_2))$ the Laurent power series ring over K_1 in the variable t_2. Notation: $K_2 := K_0((t_1))((t_2))$. Show that K_2 has a canonical valuation ring R with $\Gamma_R \cong \mathbb{Z} \times \mathbb{Z}$ ordered lexicographically and $\kappa_R = K_0$. Thus R is/is not...

Prove the following useful and famous fact:

Finiteness Lemma. Let A be a Noetherian domain, $K = \text{Quot}(A)$ its ring of fractions. Let $L|K$ be a finite field extension, and B the integral closure of A in L. Then B is a finite A-module, hence Noetherian, in any of the following cases:
 i) A is integrally closed, and $L|K$ is separable.
 ii) A is an algebra of finite type over some field k.

4) Prove i) along the following lines:
 a) There exists a K-basis $B = (\beta_1, \ldots, \beta_n)$ of L with $\beta_i \in B$ for all $1 \leq i \leq n$.
 b) Let $B^* = (\beta_1^*, \ldots, \beta_n^*)$ be the K-basis of L which satisfies Tr$_{L|K}(\beta_i^* \beta_j) = \delta_{ij}$ for all i, j. Then one has $B \subseteq A\beta_1^* + \ldots + A\beta_n^*$, hence B is a finite A-module.

Hint: Let $x = \sum_i a_i \beta_i$. Then Tr$_{L|K}(x\beta_i) = a_i$ (WHY?). And $x \in B$ implies $a_i \in A$ (WHY?).

5) Prove ii) along the following reduction steps:
 a) Let $T = (t_1, \ldots, t_d)$ be a Noether basis of A over k. Then B equals the integral closure of $R_0 := k[T]$ in L.
 b) Let M be a finite extension of L, and C the integral closure of A in M. If C is a finite A-module, then so is B.
 c) Now set $K_0 = k(T) = \text{Quot}(R_0)$. Then w.l.o.g. we can suppose that $L|K_0$ is normal.
 d) W.l.o.g. we can suppose that $L|K_0$ is pure inseparable.
 e) W.l.o.g. we can suppose that $L|K_0$ is of the form: $L = k_1[T_1]$, where $k_1|k$ is finite pure inseparable, and $T_1 = (u_1, \ldots, u_d)$ with $u_i^p = t_i$ for some power p^n of $p = \text{char}(k)$.
 f) Conclude the proof of ii).
Hint: To b), recall that B is a submodule of C, etc. For c) apply b). For d), apply the transitivity of being finite together with Problem 4. To e), remark that if $a^{p^e} = p(t_1, \ldots, t_d)$ for some $p(t_1, \ldots, t_d) \in k[T]$, then a is contained in the extension of $k[T]$ generated by the (p^e)th roots from all the coefficients of $p(t_1, \ldots, t_d)$ and of all the t_i (WHY?), etc.

Note: In general, in the above context, the integral closure B of A in L is not a finite A-module. An example is the following: $u \in \mathbb{F}_p[[t]]$ be a non-p-power in $\mathbb{F}_p[[t]]$ and not algebraic over $\mathbb{F}_p(t)$. Set $A = \mathbb{F}_p(t, u^p) \cap \mathbb{F}_p[[t]]$. Then A is a DVR of $K := \mathbb{F}_p(t, u^p)$ (WHY?). Let $L = \mathbb{F}_p(t, u)$. Then $L|K$ has degree p (WHY?), hence finite. But the integral closure of A in L is not a finite A-module (WHY?).

6) Let $K|\mathbb{Q}$ be a number field, and \mathcal{O}_K be its ring of algebraic integers. Show the following:
 a) \mathcal{O}_K is a Dedekind ring.
 b) Let $K = \mathbb{Q}[\sqrt{-5}]$. Compute the representation of $(2), (3), (1 - \sqrt{-5}), (1 + \sqrt{-5})$ as products of prime ideals of \mathcal{O}_K.

7) Let A be a domain, $K = \text{Quot}(A)$ its quotient field. Prove the following:
 a) A fractional ideal M of A is invertible \iff M is a projective A-module.
 Next suppose that A is a Dedekind ring.
 b) If the ideal class group $\mathcal{C}(A)$ is a torsion group, then every over-ring $A \subseteq B \subseteq K$ of A is a fraction ring of A.
 c) Does the converse of the assertion from b) hold?

8) Let A be a Dedekind ring with $K := \text{Quot}(A)$. Show the following:
 a) Every finite non-trivial projective A-module M is of the form $M \cong A^{-1} \oplus a$, where a is an ideal of A and $r \geq 1$. Here r is the dimension of $M \otimes_A K$ as K-vector space.
 b) If $M \cong A^{-1} \oplus a$ and $M \cong A^{-1} \oplus b$ with a, b ideals of A, then $r = s$ and the ideal classes \hat{a} and \hat{b} are equal.
 c) Show that $\mathbb{Z} \oplus \mathcal{C}(A)$ has a ring structure as follows: $(r, \hat{a}) + (s, \hat{b}) := (r + s, \hat{a} \hat{b})$, and $(r, \hat{a}) \cdot (s, \hat{b}) := (rs, \hat{a} \hat{b}^s)$.
 d) Finally, show that the Grothendieck ring $K(A)$ is isomorphic to $\mathbb{Z} \oplus \mathcal{C}(A)$, via $A^{-1} \oplus a \mapsto (r, \hat{a})$.

9) Let A be a domain, and R an A-algebra of finite type which has no non-trivial zero-divisors. Prove or disprove the following:
 a) If $A = \mathbb{Z}$, then R is catenary.
 b) If $R = \mathbb{Z}_p$, then R is non necessarily catenary.
 c) What could be a necessary and sufficient condition on A such that all R as above are catenary?

Hint: To a), if \mathfrak{m} is a maximal ideal of R, what can you say about $\kappa_{\mathfrak{m}} := R/\mathfrak{m}$? To b), what about ideals of the form $(at - 1) \subseteq \mathbb{Z}_p[t]$?