Problem Set 6

Norm and co-norm (continued)

1) Deduce from exercise 6) of PS 5 the following:
 a) \(\mathcal{L}_{L|K} \) and \(\mathcal{N}_{L|K} \) map principal divisors to principal divisors, thus they define canonically a co-norm and a norm for the ideal class groups:
 \[
 \mathcal{L}_{L|K} : \mathfrak{C}(R) \to \mathfrak{C}(S), \quad \mathcal{N}_{L|K} : \mathfrak{C}(S) \to \mathfrak{C}(R).
 \]
 b) Prove or disprove: \(\mathcal{L}_{L|K} \) is always injective. \(\mathcal{N}_{L|K} \) is always surjective.
 c) Show that \(\ker(\mathcal{N}_{L|K}) \) is contained in the group of \(n \)-torsion elements, where \(n = [L : K] \). What is the kernel of \(\mathcal{N}_{L|K} \circ \mathcal{L}_{L|K} \)?

Quadratic residues

2) Let \(p \) be an odd prime number, \(\zeta \) a primitive root of unity. Let \(S = \sum_{m=1}^{p-1} \left(\frac{m}{p} \right) \zeta^m \) be the Gauß sum attached to the Legendre symbol. Show that \(S^2 = (\frac{-1}{p})p \). In particular, if \(p^* = (\frac{-1}{p})p \), then \(\sqrt{p^*} \in \mathbb{Z}[\mu_p] \).

3) One defines the Jacobi symbol as follows: Let \(m = p_0 p_1 \ldots p_r \) and \(n = q_1 \ldots q_s \) be integers such that \(p_k \) is \(\pm 1 \) and \(q_j \) are prime numbers, \(n \) being odd. Suppose that \(m \) and \(n \) are relatively prime. Define the Jacobi symbol by \(\left(\frac{m}{n} \right)' = \prod_{i=1}^{r} \left(\frac{m}{q_i} \right) \), where \(\left(\frac{m}{q_i} \right) \) is the usual Legendre symbol. Prove the following:
 a) If \(m_1 \equiv m_2 \pmod{n} \), then \(\left(\frac{m_1}{n} \right)' = \left(\frac{m_2}{n} \right)' \).
 b) \(\left(\frac{n}{m} \right)' \) is multiplicative in both variables \(m \) and \(n \).
 c) One has \(\left(\frac{n}{m} \right)' = (-1)^{(n-1)/2} \). Prove or disprove: \(\left(\frac{2}{n} \right)' = (-1)^{(n^2 - 1)/8} \).
 d) If \(m \) is odd too, then \(\left(\frac{m}{n} \right)' = \left(\frac{m}{n} \right)' (-1)^{(m-1)/2} (-1)^{(n-1)/2} \).
 e) Prove or disprove: \(m \pmod{n} \) is a square in \(\mathbb{Z}/n \) iff \(\left(\frac{m}{n} \right)' = 1 \).

4) Using the properties of the Jacobi symbol try to estimate the number of multiplications needed for checking whether \(x \pmod{p} \) is a square in \(\mathbb{F}_p \). How does this compare with making a list of all the squares in \(\mathbb{F}_p \)?

Different/discriminant/ramification

5) In the usual context \(R, K, L|K, \) and \(S, \) with \(L|K \) finite separable, try to prove the following: A prime \(q \in \mathcal{X}_p \) is ramified in \(S|R \) iff \(q \) divides the different \(\mathfrak{D}_{S|R} \).

Hint: Have none...

6) For every positive bound \(c > 0 \), let \(K_c \) be the set of all the isomorphism types of number fields \(K|\mathbb{Q} \) such that \(|\delta_K| \leq c \). Further, for a given algebraic number \(\alpha \), let \(K^\alpha = \{ K \in K_c \mid \alpha \in K \} \), and finally \(K^\alpha_{\mathbb{Z}_{al}} = \{ K \in K^\alpha \mid K|\mathbb{Q} \text{ Galois extension} \} \).
 a) Prove or disprove: \(K_c \) is finite for all \(c > 0 \) iff \(K^\alpha \) is finite for all \(c > 0 \).
 b) The same question for \(K^\alpha \) versus \(K^\alpha_{\mathbb{Z}_{al}} \).

Hint: For \(K \in K_c \) and \(L = K[\alpha] \), find estimates for \([L : \mathbb{Q}] \) and \(|\delta_L| \) in terms of \(c \) and \(\alpha \), etc.

Minkowski’s Method

7) Let \(V \) be a real finite dimensional vector space. For points \(P, Q \in V \) we denote by \([P, Q]\) the segment defined by \(P \) and \(Q \). Show the following:
 a) \(X \subset V \) is convex iff \(\forall P, Q \in X \) it holds: \(\frac{1}{2}(P + Q) \in X \) and \([P, Q] \cap X \) is a closed subset of \(V \).
 b) Using this show that the sets \(X \) and \(X_0 \) defined in the lecture are convex subsets of \(V^{r,s} \).
 c) Complete the proof of the assertions: \(\mu(X_\ast) = 2^r \pi^s \prod_i a_i \prod_j b_j^2 \), and \(\mu(X_0) = 2^r \left(\frac{2}{m} \right) \prod_i a_i \prod_j b_j^2 \).

8) Show that the quadratic fields with discriminants \(-11, -8, -7, -4, -3, 5, 8, 13\) are PID. Find the square free \(d \in \mathbb{Z} \) defining these quadratic fields.