Consider the usual context: \(k, K|k, k[X], k^n, \) etc.

Basics

1) Answer the following:
 a) Describe the affine \(k \)-algebraic subsets of \(\mathbb{A}^1 \) which are Zariski closed; when is such a subset irreducible, resp. absolutely irreducible?
 b) The same question for the 0-dimensional closed subsets of \(\mathbb{A}^n \).
 c) Is the answer similar, if we drop the hypothesis "0-dimensional" in case b)?

2) For \(n \geq 3 \), answer the following questions:
 a) What are the irreducible components of \(V_1 = V(2X_1^2 - 3X_2X_3), V_2 = V(X_1X_2 - X_1), \) and \(V_1 \cap V_2? \)
 b) What are the connected components of the above affine \(k \)-algebraic sets?

3) For \(n = 3 \), consider \(X = \{ (t, t^2, t^3) \mid t \in K \} \subset \mathbb{A}^3. \) Show that \(X \) is an absolutely irreducible affine \(k \)-algebraic set of dimension 1. (\(X \) is called the twisted cubic curve in \(\mathbb{A}^3 \).)

Zariski closure

For \(V \) an affine \(k \)-algebraic set, and \(T \subset V \), let \(\overline{T} \) denote the closure of \(T \) in \(V \) in the Zariski topology (for short, the Zariski closure of \(T \) in \(V \)). Further set \(I(T) = \{ f \in k[X] \mid f|_T = 0 \} \).

4) Show that \(V(I(T)) \) is the Zariski closure of \(T \) in \(\mathbb{A}^n \). What is the corresponding assertion, if we replace \(\mathbb{A}^n \) by \(V \)?

5) For a one element set \(\{ x \} \subset \mathbb{A}^n \), let \(V_x \) be the Zariski closure of \(x \) in \(\mathbb{A}^n \).
 a) Show that \(V_x \) is always irreducible. Prove or disprove: \(V_x \) is absolutely irreducible.
 b) Prove or disprove: When \(x \) varies, \(\dim(V_x) \) can be any number between 0 and \(n \).
 c) How can one deduce the coordinate ring \(k[V_x] \) of the affine \(k \)-alg. set \(V_x \) from \(x = (x_1, \ldots, x_n) \)?

Definition. In the context above, \(x \in V \) is called a generic point in classical sense of \(V \), if \(V = V_x \).

6) Given an affine \(k \)-algebraic subset \(V \subset \mathbb{A}^n \), prove the following:
 a) If \(V \) has a generic point, then \(V \) is irreducible.
 b) The converse of a) is true iff \(\text{tr.deg}(K|k) \geq \dim(V) \).
 c) Prove or disprove: The set of generic points in classical sense of \(V \) is either empty or infinite.

Connectivity.

7) Prove or disprove:
 a) \(U_1 = \mathbb{A}^1 \setminus \{0\} \) is connected as a subset of \(\mathbb{A}^1 \).
 b) The same question about \(U_2 = \mathbb{A}^n \setminus V, \) with \(V \) some affine \(k \)-algebraic subset of \(\mathbb{A}^n \).

Given an affine \(k \)-algebraic subset \(V \subset \mathbb{A}^n \), let \(k[V] \) be its coordinate ring, and \(kV \) denote the algebraic closure of \(k \) in \(k(V) \) the total fraction field of \(k[V] \).

8) Prove the following assertion made in the Lecture: Let \(V_\beta \subseteq V \) be a non-empty subset. Then \(V_\beta \) is a connected component of \(V \) iff there exists a minimal idempotent \(\pi \in k[V] \) such that \(V_\beta = V(1 - \pi) \).

9) Show that \(V \) is geometrically connected iff \(kV|k \) is a purely inseparable field extension.