1) Prove the following assertions from the Lecture:
 a) Let R be a reduced commutative ring having finitely many minimal prime ideals denoted $\{p_\alpha\}_\alpha$, and set $R_\alpha = R/p_\alpha$. Then $\text{Quot}(R) \cong \oplus_\alpha \text{Quot}(R_\alpha)$, and $\tilde{R} \cong \oplus_\alpha \tilde{R}_\alpha$ canonically.
 b) If X is a k-prevariety with irreducible components X_α, and $\tilde{\phi}_\alpha : \tilde{X}_\alpha \to X_\alpha$ is the normalization of X_α, then the canonical morphism $\coprod_\alpha \tilde{\phi}_\alpha : \coprod_\alpha \tilde{X}_\alpha \to X$ is the normalization of X.
 c) The normalization morphism $\tilde{\phi} : \tilde{X} \to X$ is an affine morphism, i.e., if $U \subset X$ is an open affine subset, then its preimage $\tilde{\phi}^{-1}(U)$ is an affine subset of \tilde{X}.

2) Prove the following:

Theorem. Let X be a k-prevariety with ring of rational functions $k(X)$. Let $\iota : k(X) \hookrightarrow K$ be a reduced finite $k(X)$-algebra. Then there exists a normal k-prevariety X' with $k(X') = K$ together with a dominant k-morphism $\phi' : X' \to X$ with the following properties:
 (i) ϕ' is finite, surjective, and $\iota = \phi'^\#$.
 (ii) Universal property: Given a dominant k-morphism $\psi : Y \to X$ and a factorization of the resulting k-embedding $\psi^\# : k(X) \to k(Y)$ through ι, say of the form $\psi^\# : k(X) \hookrightarrow K \twoheadrightarrow k(Y)$, then there exists a unique $\psi' : Y \to X'$ s.t. $\psi := \phi' \circ \psi'$, and $\iota = \psi'^\#$.

In the above context, $\phi' : X' \to X$ is called the **normalization of X in the extension** $\iota : k(X) \hookrightarrow K$.

3) Let $k = \mathbb{F}_{p}(t)$, $p = 2, 3$, be the rational function field in the variable t over the prime field \mathbb{F}_p. Consider the closed k-subvariety $Y = V(Y_1^2 - Y_2 - tY_1^9) \subset \mathbb{A}_k^2$, and let X be its projective closure in \mathbb{P}_k^2.
 a) Prove or disprove: Y is (absolutely) irreducible. The same question for X.
 b) Describe the normal, resp. regular, resp. smooth points of Y. The same question for X.
 c) Describe the normalizations $\tilde{Y} \to Y$ and $\tilde{X} \to X$.
 d) Is \tilde{Y}, respectively \tilde{X}, geometrically normal and/or geometrically regular?

4) The same problem for $Y = V(X_1^2X_2^3X_3^3 - X_2^2X_3^3 - 1)$, but over an arbitrary base field k, $\text{char}(k) \neq 2$.

Hint: Set $k[Y] = k[x_1, x_2, x_3]$. Then $\Omega_{Y/k}$ is freely generated by dx_1, dx_3 (WHY?), etc.

5) Let X and Y be k-prevarieties, $X \times_k Y$ their product. For $x \in X$, $y \in Y$, and $(x, y) \in X \times_k Y$, prove or disprove:
 a) x and y are normal (resp. regular) points if (x, y) is a normal (resp. regular) point.
 b) The same question with “smooth” in stead of “normal”.

Math 624 (Algebraic Geometry) / Problem Set 7

Due: Dec 17, 2004