1) Answer the following:
 a) Find a g.c.d. of the polynomials \(f(X) = X^8 - X^7 + 2X - 6 \) and \(g(X) = x^4 + 3X \) in \(\mathbb{F}_p[X] \), where \(p \) is any prime number.
 b) Show that the ring \(R = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \} \) is Euclidean w.r.t. \(\varphi : R \to \mathbb{N} \), \(\varphi(a + b\sqrt{2}) = |a^2 - 2b^2| \).
 Find a g.c.d. of \(x = 7 + 3\sqrt{2} \) and \(y = 5 + 6\sqrt{2} \).

2) Let \(R = \mathbb{F}_2[X, Y] \) be the polynomial ring over \(\mathbb{F}_2 \).
 a) Show that the ideal \(\mathfrak{a} = (X - Y) R + (X - 1) R \) in \(R \) is maximal and not principal.
 b) Prove or disprove: All the ideals \(\mathfrak{a} \) of \(R \) which contain \(X + 1 \) are of the form \(f(Y) R + (X + 1) R \), where \(f(Y) \) is an irreducible polynomial; and \(\mathfrak{a} \) is a maximal ideal of \(R \) iff \(f(Y) \) is an irreducible polynomial.

3) Let \(f : N \to M \) be an \(R \)-homomorphism of \(R \)-modules.
 a) Prove that \(\ker(f) \) and \(\text{im}(f) \) are \(R \)-submodules of \(N \).
 b) Suppose that \(f \) is surjective. Prove that if \((x_i)_{i \in I} \) is a system of generators of \(N \) as an \(R \)-module, then \((f(x_i))_{i \in I} \) is a system of generators of \(M \).

4) For an \(R \)-module \(M \) we denote \(\text{Ann}_R(M) = \{ a \in R \mid a x = 0 \forall x \in M \} \).
 a) Find \(\text{Ann}_R(M) \) in the case \(R = \mathbb{Z} \) and \(M = \mathbb{Z} \times \mathbb{Z}/15 \times \mathbb{Z}/25 \).
 b) Same question in case \(M = R/a \times R/b \), where \(a \) and \(b \) are ideals of \(R \).

5) All the matrices below are from \(M_2(R) \), where \(R \) is a commutative ring with 1. Prove or disprove:
 a) Let \(A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \), with \(a \in R^\times \) a unit of \(R \). Then for \(B = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \) there exist matrices \(X, Y \in M_2(R) \)
 s.t. \(B = XAY \).
 b) For every non-zero matrix \(A \in M_2(R) \) one has: \(M_2(R) = M_2(R) \cdot A \cdot M_2(R) \), provided at least one of
 the coefficients of \(A \) is a unit in \(R \).

6) Let us denote \(V = \mathbb{R}^3 \) viewed as an \(\mathbb{R} \)-vector space endowed with the “canonical basis” \(\mathcal{E} = (e_1, e_2, e_3) \).
 a) Find an \(\mathbb{R} \)-basis for the \(\mathbb{R} \)-subspace of \(V \) generated by the vectors \(v_1 = (3, 1, 1), v_2 = (1, -2, 0), v_3 = (7, 5, 3) \).
 b) Define \(\varphi : V \to V \) by \(\varphi(e_i) = v_i \ (i = 1, 2, 3) \). Describe \(\ker(\varphi) \), and prove or disprove: \(\varphi \) is surjective.

7) Let us denote \(V = \mathbb{R}^3 = \{ (x_1, x_2, x_3) \mid x_i \in \mathbb{R} \} \) viewed as an \(\mathbb{R} \)-vector space.
 a) Prove that \(\mathcal{A} = (u_1, u_2, u_3) \) with \(u_1 = (1, 2, 2), u_2 = (2, 1, 2), u_3 = (3, 1, 1), \) is an \(\mathbb{R} \)-basis of \(V \).
 b) Let \(\varphi : V \to V \) be the reflexion w.r.t. the plane \(x_1 = 0 \) in \(V \), i.e.: \(\varphi(x_1, x_2, x_3) = (-x_1, x_2, x_3) \). Find
 the matrix of \(\varphi \) in the basis \(\mathcal{A} \).

8) Consider \(A = \begin{pmatrix} 0 & 1 & 1 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix} \in M_{2 \times 4}(\mathbb{R}) \). Let \(V \subset M_{4 \times 1}(\mathbb{R}) \) be the set of all column vectors \(X \) such \(AX = 0 \).
 a) Show that \(V \) is an \(\mathbb{R} \)-subspace of \(M_{4 \times 1}(\mathbb{R}) \).
 b) Find an \(\mathbb{R} \)-basis of \(V \).