Abstract

We begin higher Waldhausen K-theory. The main sources for this talk are Chapter 8 of Rognes, Chapter IV.8 of Weibel, and nLab. For the original development, see Friedhelm Waldhausen’s *Algebraic K-theory of spaces* (1985), 318-419.

Remark 1. Let \mathcal{C} be a Waldhausen category. Our goal is to construct the K-theory $K(\mathcal{C})$ of \mathcal{C} as a based loop space ΩY endowed with a loop completion map $i : |w\mathcal{C}| \to K(\mathcal{C})$ where $w\mathcal{C}$ denotes the subcategory of weak equivalences. This will produce a function $\text{ob} \mathcal{C} \to |w\mathcal{C}| \to \Omega Y$. Further, we’ll require of $K(\mathcal{C})$ certain limit and coherence properties, eventually rendering $K(\mathcal{C})$ the underlying infinite loop space of a spectrum $K(\mathcal{C})$, called the algebraic K-theory spectrum of \mathcal{C}.

Definition. Let \mathcal{C} be a category equipped with a subcategory $\text{co}(\mathcal{C})$ of morphisms called *cofibrations*. The pair $(\mathcal{C}, \text{co}(\mathcal{C}))$ is a *category with cofibrations* if the following conditions hold.

1. (W0) Every isomorphism in \mathcal{C} is a cofibration.
2. (W1) There is a base point $*$ in \mathcal{C} such that the unique morphism $* \to A$ is a cofibration for any $A \in \text{ob} \mathcal{C}$.
3. (W2) We have a cobase change

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
C & \to & B \cup_A C
\end{array}
\]

Remark 2. We see that $B \bigsqcup C$ always exists as the pushout $B \cup_A C$ and that the cokernel of any $i : A \to B$ exists as $B \cup_A *$ along $A \to *$. We call $A \hookrightarrow B \rightrightarrows B/A$ a *cofiber sequence*.

Definition. A *Waldhausen category* \mathcal{C} is a category with cofibrations together with a subcategory $w\mathcal{C}$ of morphisms called *weak equivalences* such that every isomorphism in \mathcal{C} is a w.e. and the following “Gluing axiom” holds.

1. (W3) For any diagram

\[
\begin{array}{ccc}
C & \xleftarrow{\sim} & A & \to & B \\
\downarrow & & \downarrow & & \downarrow \\
C' & \xleftarrow{\sim} & A' & \to & B'
\end{array}
\]

the induced map $B \cup_A C \to B' \cup_{A'} C'$ is a w.e.

Definition. A Waldhausen category (\mathcal{C}, w) is *saturated* if whenever fg makes sense and is a w.e., then f is a w.e. iff g is.

Definition. We now introduce the main concept to be generalized.

Let \mathcal{C} be a category with cofibrations. Let the *extension category* $S_2 \mathcal{C}$ have as objects the cofiber sequences in $(\mathcal{C}, \text{co}(\mathcal{C}))$ and as morphisms the triples (f', f, f'') such that

\[
\begin{array}{ccc}
X' & \to & X & \to & X'' \\
\downarrow & & f & & \downarrow \\
Y' & \to & Y & \to & Y''
\end{array}
\]

commutes. This is pointed at $* \to * \to *$.
Definition. Suppose an arbitrary triple \((f', f, f'')\) as above has the property that whenever \(f'\) and \(f''\) are w.e., then so is \(f\). Then we say \(\mathcal{C}\) is *extensional* or *closed under extensions*.

Remark 3. Say that the morphism \((f', f, f'')\) is a cofibration if \(f'\), \(f''\), and \(Y' \cup_X Y \to Y\) are cofibrations in \(\mathcal{C}\). Say that the same triple is a weak equivalence if \(f'\), \(f\), and \(f''\) are w.e. in \(\mathcal{C}\). This makes \(S_2\mathcal{C}\) into a Waldhausen category.

Definition. Let \(q \geq 0\). Let the *arrow category* \(\text{Ar}[q]\) on \([q]\) have as objects ordered pairs \((i, j)\) with \(i \leq j \leq q\) and as morphisms commutative diagrams of the form

\[
\begin{array}{ccc}
 i & \leq & j \\
 \downarrow & & \downarrow \\
 i' & \leq & j'
\end{array}
\]

We view \([q]\) a full subcategory of \(\text{Ar}[q]\) via the embedding \([q] \xrightarrow{k \mapsto (0, k)} \text{Ar}[q]\).

Remark 4.

1. Any triple \(i \leq j \leq k\) determines the morphisms \((i, j) \to (i, k)\) and \((i, k) \to (j, k)\). Conversely, any morphism in the arrow category is a composition of such triples.

2. \(\text{Ar}[q] \cong \text{Fun}([1], [q])\) by identifying each pair \((i, j)\) with the functor satisfying \(0 \mapsto i\) and \(1 \mapsto j\).

Example 1. The category \(\text{Ar}[2]\) is generated by the commutative diagram

\[
\begin{array}{ccc}
 (0, 0) & \longrightarrow & (0, 1) \\
 \downarrow & & \downarrow \\
 (1, 1) & \longrightarrow & (1, 2) \\
 \downarrow & & \downarrow \\
 (2, 2)
\end{array}
\]

Definition. Let \(\mathcal{C}\) be a category with cofibrations and \(q \geq 0\). Define \(S_q\mathcal{C}\) as the full subcategory of \(\text{Fun}(\text{Ar}[q], \mathcal{C})\) generated by \(X : \text{Ar}[q] \to \mathcal{C}\) such that

1. \(X_{j,j} = *\) for each \(j \in [q]\).

2. \(X_{i,j} \to X_{i,k} \to X_{j,k}\) is a cofiber sequence for any \(i < j < k\) in \([q]\). Equivalently, if \(i \leq j \leq k\) in \([q]\), then the square

\[
\begin{array}{ccc}
 X_{i,j} & \longrightarrow & X_{i,k} \\
 \downarrow & & \downarrow \\
 X_{j,j} = * & \longrightarrow & X_{j,k}
\end{array}
\]

is a pushout.

This is pointed at the constant diagram at *.
Remark 5. A generic object in $S_q\mathcal{C}$ looks like

\[
\begin{array}{ccccccccc}
* & \rightarrow & X_1 & \leftarrow & \cdots & \rightarrow & X_{q-1} & \rightarrow & X_q \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
* & \rightarrow & X_{q-1}/X_1 & \leftarrow & \cdots & \rightarrow & X_q/X_1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\cdots & \vdots \\
* & \rightarrow & X_q/X_{q-1} \\
\end{array}
\]

where X_q corresponds to $X_{0,q}$ and X_{j}/X_i to $X_{i,j}$ for any $1 \leq i \leq j \leq q$.

Definition. Let $(\mathcal{C}, co\mathcal{C})$ be a category with cofibrations. Let $coS_q\mathcal{C} \subset S_q\mathcal{C}$ consist of the morphisms $f : X \rightarrow Y$ of $\text{Ar}[q]$-shaped diagrams such that for each $1 \leq j \leq q$ we have

\[
\begin{array}{ccccccccc}
X_{0,j-1} & \rightarrow & X_{0,j} & \leftarrow & \cdots & \rightarrow & X_{0,q-1} & \rightarrow & X_{0,q} \\
Y_{0,j-1} & \rightarrow & X_{0,j} \cup X_{0,j-1} & \leftarrow & \cdots & \rightarrow & X_{0,q} \cup X_{0,q-1} & \rightarrow & X_{0,q} \\
\end{array}
\]

Proposition 1. If $f : X \rightarrow Y$ is a cofibration of $S_q\mathcal{C}$, then

\[
\begin{array}{ccccccccc}
X_{i,j} & \rightarrow & X_{i,k} \\
Y_{i,j} & \rightarrow & Y_{i,k} \\
\end{array}
\]

for any $i \leq j \leq k$ in $[q]$.

Proof. The proof is mostly an easy induction argument along with an application of Lemma 1 above. See Rognes, Lemma 8.3.12. \hfill \square

Lemma 1. $(S_q\mathcal{C}, coS_q\mathcal{C})$ is a category with cofibrations.

Proof. First notice that the composite of two cofibrations $g \circ f : X \rightarrow Y \rightarrow Z$ is a cofibration because we have

\[
\begin{array}{ccccccccc}
X_{0,j-1} & \rightarrow & X_{0,j} & \leftarrow & \cdots & \rightarrow & X_{0,q-1} & \rightarrow & X_{0,q} \\
Y_{0,j-1} & \rightarrow & X_{0,j} \cup X_{0,j-1} & \leftarrow & \cdots & \rightarrow & X_{0,q} \cup X_{0,q-1} & \rightarrow & X_{0,q} \\
Z_{0,j-1} & \rightarrow & X_{0,j} \cup X_{0,j-1} & \leftarrow & \cdots & \rightarrow & X_{0,q} \cup X_{0,q-1} & \rightarrow & X_{0,q} \\
\end{array}
\]
It’s clear that any isomorphism or initial morphism in $S_q\mathcal{C}$ is a cofibration.

To see that (W2) is satisfied, let $f : X \to Y$ and $g : X \to Z$ be morphisms in $S_q\mathcal{C}$. It’s easy to verify that each component $f_{i,j} : X_{i,j} \to Y_{i,j}$ is a cofibration. Thus, each pushout $W_{i,j} := Y_{i,j} \cup_{X_{i,j}} Z_{i,j}$ exists. These form a functor $W : \text{Ar}[q] \to \mathcal{C}$. If $i < j < k$, then we have $W_{i,j} \to W_{i,k} \to W_{j,k}$ because the left morphism factors as the composite of two cofibrations

$$
\begin{array}{ccc}
Z_{i,j} & \longrightarrow & Z_{i,k} \\
\downarrow & & \downarrow \\
Y_{i,j} \cup_{X_{i,j}} Z_{i,j} & \longrightarrow & Y_{i,k} \cup_{X_{i,j}} Z_{i,k}
\end{array}
$$

$$
\begin{array}{ccc}
\text{id} \cup g_{i,k} & & \text{id} \cup g_{i,j} \\
\uparrow & & \uparrow \\
Y_{i,j} \cup_{X_{i,j}} X_{i,k} & \longrightarrow & Y_{i,k}
\end{array}
$$

The fact that colimits commute confirms that $W_{j,k} \cong W_{i,k} / W_{i,j}$. Hence W is the pushout of f and g. To verify that this is a cofibration, we must check that the pushout map $W_{0,j-1} \cup_{Z_{0,j-1}} Z_{0,j} \to W_{0,j}$ is a cofibration. But this follows from the pushout square

$$
\begin{array}{ccc}
Y_{0,j-1} \cup_{X_{0,j-1}} X_{0,j} & \longrightarrow & Y_{0,j} \\
\downarrow & & \downarrow \\
Y_{0,j-1} \cup_{X_{0,j-1}} Z_{0,j} & \longrightarrow & Y_{0,j} \cup_{X_{0,j}} Z_{0,j}
\end{array}
$$

Definition. Let $(\mathcal{C}, w\mathcal{C})$ be a Waldhausen category. Let $wS_q\mathcal{C} \subseteq S_q\mathcal{C}$ consist of the morphisms $f : X \sim \to Y$ of $\text{Ar}[q]$-shaped diagrams such that the component $f_{0,j} : X_{0,j} \to Y_{0,j}$ is a w.e. in \mathcal{C} for each $1 \leq j \leq q$.

Proposition 2. Let f be a w.e. in $S_q\mathcal{C}$. Each component $f_{i,j} : X_{i,j} \to Y_{i,j}$ is a w.e. in \mathcal{C}.

Proof. Apply the Gluing axiom to the diagram

$$
\begin{array}{ccc}
X_{0,j} & \longrightarrow & X_{0,i} \\
\cong & & \cong \\
Y_{0,j} & \longrightarrow & Y_{0,i}
\end{array}
$$

Then $X_{i,j} \cong X_{0,j} \cup_{X_{0,i}} \ast \sim \to Y_{0,j} \cup_{Y_{0,i}} \ast \cong Y_{i,j}$, as desired.

Lemma 2. $(S_q\mathcal{C}, wS_q\mathcal{C})$ is a Waldhausen category.

Definition. Let \mathcal{C} be a category with cofibrations. If $\alpha : [p] \to [q]$, then define $\alpha^* : S_q\mathcal{C} \to S_p\mathcal{C}$ by

$$
\alpha^*(X : \text{Ar}[q] \to \mathcal{C}) = X \circ \text{Ar}(\alpha) : \text{Ar}[p] \to \text{Ar}[q] \to \mathcal{C}.
$$

It’s easy to check that this satisfies the two conditions of a diagram in $S_p\mathcal{C}$. Moreover, the face maps d_i are given by deleting the row $X_{i,-}$ and the column containing X_i in (\ast) of Remark 5 and then reindexing as necessary. The degeneracy maps s_i are given by duplicating X_i and then reindexing such that $X_{i+1,i} = 0$. [[Not sure the s_i work.]]

Proposition 3. Let $(\mathcal{C}, w\mathcal{C})$ be a Waldhausen category. Each functor $\alpha^* : S_q\mathcal{C} \to S_p\mathcal{C}$ is exact, so that $(S^\bullet \mathcal{C}, wS^\bullet \mathcal{C})$ is a simplicial Waldhausen category.
Remark 6. The nerve $N_* wS_* C$ is a bisimplicial set with (p,q)-bisimplices the diagrams of the form

\[\ast \to X_0^0 \to X_1^0 \to \cdots \to X_q^0 \]
\[\sim \downarrow \sim \downarrow \sim \downarrow \]
\[\ast \to X_0^1 \to X_1^1 \to \cdots \to X_q^1 \]
\[\sim \downarrow \sim \downarrow \sim \downarrow \]
\[\vdots \vdots \vdots \vdots \]
\[\sim \downarrow \sim \downarrow \sim \downarrow \]
\[\ast \to X_0^p \to X_1^p \to \cdots \to X_q^p \]

such that $X_{i,j}^k \cong X_{j,k}^i$ for every $i \leq j \leq q$ and $k \in [p]$.

Lemma 3. There is a natural map $N_* w\mathcal{C} \wedge \Delta^1_* \to N_* wS_* \mathcal{C}$, which automatically induces a based map $\sigma : \Sigma|w\mathcal{C}| \to |wS_* \mathcal{C}|$ of classifying spaces.

Proof. We can treat $N_* wS_* \mathcal{C}$ as the simplicial set $[q] \mapsto N_* wS_q \mathcal{C}$. This defines a right skeletal structure on $N_* wS_* \mathcal{C}$.

If $q = 0$, then $wS_0 \mathcal{C} = S_0 \mathcal{C} = \ast$, so that $N_* wS_0 \mathcal{C} = \ast$ as well. If $q = 1$, then $wS_1 \mathcal{C} \cong w\mathcal{C}$. Thus, the right 1-skeleton is equal to $N_* w\mathcal{C} \wedge \Delta^1_*$, which in turn must be equal to the image I of the canonical map

\[\prod_{q \leq 1} N_* wS_q \mathcal{C} \times \Delta^1_* \to N_* wS_* \mathcal{C}. \]

Now, the degeneracy map s_0 collapses $\{\ast\} \times \Delta^1_*$, and the face maps d_0 and d_1 collapse $N_* w\mathcal{C} \times \partial \Delta^1_*$. Therefore, I must equal

\[N_* w\mathcal{C} \wedge \Delta^1_* = \frac{N_* w\mathcal{C} \times \Delta^1_*}{\{\ast\} \times \Delta^1_* \cup N_* w\mathcal{C} \times \partial \Delta^1_*}. \]

We have defined a natural inclusion map $\lambda : N_* w\mathcal{C} \wedge \Delta^1_* \to N_* wS_* \mathcal{C}$.

Since Δ^1_* is isomorphic to the unit interval and the map λ agrees on the endpoints, we can pass to S^1 during the suspension. Hence λ immediately induces the desired map σ. [[This is a tentative explanation offered by Thomas.]]

Remark 7. The axiom (W3) implies that $w\mathcal{C}$ is closed under coproducts, making $|wS_* \mathcal{C}|$ into an H-space via the map

\[\prod : |wS_* \mathcal{C}| \times |wS_* \mathcal{C}| \cong |wS_* \mathcal{C} \times wS_* \mathcal{C}| \to |wS_* \mathcal{C}|. \]

Definition. Let $(\mathcal{C}, w\mathcal{C})$ be a Waldhausen category. Define the algebraic K-theory space

\[K(\mathcal{C}, w) = \Omega|N_* wS_* \mathcal{C}|. \]

Then we have a right adjoint $\iota : |w\mathcal{C}| \to K(\mathcal{C}, w)$ to the based map σ.

Moreover, let $F : (\mathcal{C}, w\mathcal{C}) \to (\mathcal{D}, w\mathcal{D})$ be an exact functor. Then set $K(F) = \Omega|wS_* F| : K(\mathcal{C}, w) \to K(\mathcal{D}, w)$. We have thus defined the algebraic K-theory functor $K : Wald \to Top_*$.

Remark 8. Recall that any exact category \mathcal{A} is a Waldhausen category with cofibrations the admissible exact sequences and w.e. the isomorphisms. Waldhausen showed that $iS_* \mathcal{A}$ (where i denotes the iso category) and $BQ \mathcal{A}$ are homotopy equivalent. Hence our current definition of higher algebraic K-theory agrees with Quillen’s.
Example 2. Let \(R \) be a ring. Define the \emph{algebraic K-theory space} of \(R \) as

\[
K(R) = K(P(R), i)
\]

where the w.e. \(i \) are precisely the injective \(R \)-linear maps with projective cokernel and the cofibrations are precisely the \(R \)-linear maps.

Example 3. Assume that \(\mathcal{C} \) is a small Waldhausen category where \(w\mathcal{C} \) consists of the isomorphisms in \(\mathcal{C} \). If \(s_0 \mathcal{C} \) denotes the set of objects of \(S_0 \mathcal{C} \), then we get a simplicial set \(s_\bullet \mathcal{C} \). Waldhausen showed that the inclusion \(|s_\bullet \mathcal{C}| \to |S_\bullet \mathcal{C}| \) is a homotopy equivalence. This makes \(\Omega |s_\bullet \mathcal{C}| \) into a so-called simplicial model for \(K(\mathcal{C}, w) \).

Remark 9. Since \(wS_0 \mathcal{C} = \ast \) and every simplex of degree \(n > 0 \) is attached to \(\ast \), it follows that the classifying space \(|wS_\bullet \mathcal{C}| \) is connected. Therefore, we preserve any homotopical information when passing to the loop space.

Definition. Define the \(i \)-th \emph{algebraic K-group} as \(K_i(\mathcal{C}, w) = \pi_i K(\mathcal{C}, w) \) for each \(i \geq 0 \).

Proposition 4. \(\pi_1 |wS_\bullet \mathcal{C}| \cong K_0(\mathcal{C}, w) \).

Lemma 4. The group \(K_0(\mathcal{C}, w) \) is generated by \([X] \) for every \(X \in \text{ob} \mathcal{C} \) such that \([X'] + [X''] = [X] \) for every cofiber sequence \(X' \to X \to X'' \) and \([X] = [Y] \) for every \(X \sim Y \).

Proof. We compute \(\pi_1 |N_\bullet wS_\bullet \mathcal{C}| \) based at the \((0, 0) \)-bisimplex \(\ast \). Notice that \(|N_\bullet wS_\bullet \mathcal{C}| \) has a CW structure [this is reasonable visually] with 1-cells the \((0, 1) \)-bisimplices and 2-cells the \((0, 2) \)-bisimplices \(X' \to X \to X'' \) and the \((1, 1) \)-bisimplices \(X \sim Y \), which are attached to the 1-cells \(X \) and \(Y \). Any cell of dimension \(n > 2 \) is irrelevant to computing \(\pi_1 \).

Corollary 1. We obtain the functors \(K_i : \text{Wald} \to \text{Top}, \to \text{Ab} \), called the \emph{algebraic K-group functors}.

Proof. By Proposition 4, we know that \(K_i(\mathcal{C}, w) = \pi_{i+1} |wS_\bullet \mathcal{C}| \), which is abelian for \(i \geq 1 \). Moreover, note that if \(X' \to X' \vee X'' \to X'' \) and \(X'' \to X' \vee X'' \to X' \) are cofiber sequences, then the previous lemma implies that \([X'] + [X''] = [X' \vee X''] = [X'' + X'] \). Hence \(K_0(\mathcal{C}, w) \) is also abelian.

Example 4. Let \(X \) be a CW complex and \(\mathcal{R}(X) \) denote the category of CW complexes \(Y \) obtained from \(X \) by attaching at least one cell such that \(X \) is a retract of \(Y \). Equip this with cofibrations in the form of cellular inclusions fixing \(X \) and \(w.e. \) in the form of homotopy equivalences. This makes \(\mathcal{R}(X) \) into a Waldhausen category. If \(\mathcal{R}_f(X) \) denotes the subcategory of those \(Y \) obtained by attaching finitely many cells, then we write \(A(X) := K(\mathcal{R}_f(X)) \).

Lemma 5. \(A_0(X) \cong \mathbb{Z} \).

Proof. Weibel leaves this proof as an exercise.

Definition. If \(\mathcal{B} \) is a Waldhausen subcategory of \(\mathcal{C} \), then it is \emph{cofinal in} \(\mathcal{C} \) is for any \(X \in \text{ob} \mathcal{C} \), there is some \(X' \in \text{ob} \mathcal{C} \) such that \(X \amalg X' \in \text{ob} \mathcal{B} \).

Theorem 1. Let \((\mathcal{B}, w) \) be cofinal in \((\mathcal{C}, w) \) and closed under extensions. Assume that \(K_0(\mathcal{B}) = K_0(\mathcal{C}) \). Then \(wS_\bullet \mathcal{B} \to wS_\bullet \mathcal{C} \) is a homotopy equivalence. Therefore, \(K_i(\mathcal{B}) \cong K_i(\mathcal{C}) \) for every \(i \geq 0 \).