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Abstract
We continue doing higher Waldhausen K-theory. The main sources for this talk are Chapter 8 of

Rognes, Chapter V.2 of Weibel, and nLab.

Remark 1. Recall that |wS•C | is an H-space via the map∐
: |wS•C | × |wS•C | ∼= |wS•C × wS•C | → |wS•C |.

This produces an H-space structure (K(C ),+).

Definition. Let B and C be Waldhausen categories. We say that F ′ � F � F ′′ is a short exact sequence
or cofiber sequence of exact functors if every F ′(B) � F (B) � F ′′(B) is a cofiber sequence and F (A)∪F ′(A)
F ′(B) � F (B) is a cofibration in C for every A� B in B.

Remark 2. Let C be a Waldhausen category. Let (η) : A � B � C be an object in S2C . Define the
source s, target t, and quotient q functors S2C → C by s(η) = A, t(η) = B, and q(η) = C. Then s� t� q
is a cofiber sequence of functors. Since defining a cofiber sequence of exact functors B → C is equivalent to
defining an exact functor B → S2C , we may restrict our attention to s� t� q when proving things about
a given cofiber sequence of exact functors B → C . We say that S2C is universal in this sense.

Theorem 1. (Extension theorem) Let C be Waldhausen. The exact functor (s, q) : S2C → C × C induces
a homotopy K(S2C ) ' K(C )×K(C ). The functor

∐
: (A,B)→ (A� A

∐
B � B) is a homotopy inverse.

Proof. Let Cw
m denote the category of m-length sequences of weak equivalences. For each n, define snCw

m as
the commutative diagram

X0
1 X0

2 · · · X0
n

X1
1 X1

2 · · · X1
n

...
...

...

Xm
1 Xm

2 · · · Xm
n

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

.

This is naturally isomorphic to an (m,n)-bisimplex in N•wS•C , which is thus isomorphic to the bisimplicial
set s•Cw

(−). One can show that the source s and quotient q functors S2C → C give a homotopy equivalence
s× q : s•S2(Cw

m)→ s•Cw
m × s•Cw

m for each m. Thus, we get a homotopy equivalence

s•S2(Cw
(−)) ' s•Cw

(−) × s•C
w
(−)

between bisimplicial sets. But we already have that s•Cw
(−)
∼= N•wS•C , completing the proof.

Theorem 2. (The additivity theorem) Let F ′ � F � F ′′ be a short exact sequence of exact functors
B → C . Then F∗ ' F ′∗ + F ′′∗ as maps K(B)→ K(C ). Hence F∗ = F ′∗ + F ′′∗ as maps Ki(B)→ Ki(C ).

Proof. As S2C is universal, it suffices to prove that t∗ ' s∗+q∗. Notice that the two compositions C ×C

∐
−→

S2C
t

⇒
s
∐

q

C are the same. The extension theorem implies that K(
∐

) : K(C ) × K(C ) → K(S2C ) is a

homotopy equivalence. Since the H-space structure on K(C ) is induced by
∐

, we get t∗ ' s∗ + q∗.
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Definition. Let C be Waldhausen. We say that a sequence ∗ → An → · · · → A0 → ∗ is admissibly exact if
each morphism in the sequences can be written as a cofiber sequence Ai+1 � Bi � Ai.

Corollary 1. Suppose that ∗ → F 0 → F 1 → · · · → Fn → ∗ is an admissibly exact sequence of exact
functors B → C . Then

∑
i(−1)iF i∗ = 0 as maps Ki(B)→ Ki(C ).

Proof. Induct on n.

Corollary 2. Let F ′ � F � F ′′ be a short exact sequence of exact functors B → C . Then

F ′′∗ ' F∗ − F∗ ' 0.

This implies that the homotopy fiber of F ′′∗ : K(B)→ K(C ) is homotopy equivalent to K(B) ∨ ΩK(C ).

Definition. Let C be a Waldhausen category. Recall the arrow category Ar(C ) of C consisting of morphisms
in C as objects and commutative squares as morphisms. Let s and t denote the source and target functors
Ar(C )→ C , respectively.

A functor T : Ar(C ) → C is a (mapping) cylinder functor on C if it comes equipped with natrual
transformations j1 : s⇒ T , j2 : t⇒ T , and p : T ⇒ t such that for any f : A→ B, we have the commutative
diagram

A T (f) B

B

j1

f
p

j2

=
.

Moreover, T must satisfy the following axioms.

1. T sends every initial morphism ∗ → A to A for any A ∈ ob C .

2. j1
∐
j2 : A

∐
B � T (f) is a cofibration for any f : A→ B.

3. Given a morphism (a, b) : f → f ′ in Ar(C ), if both a and b are w.e. in C , then so is T (f)→ T (f ′).

4. Given a morphism (a, b) : f → f ′ in Ar(C ), if both a and b are cofibrations in C , then so is T (f) →
T (f ′). Also, the map A′

∐
A T (f)

∐
B B

′ → T (f ′) induced by axiom 2 is a cofibration in C .

5. (Cylinder Axiom) The map p : T (f)→ B is a w.e. in C .

Definition. Let T be a cylinder functor on C .

1. We call T (A→ ∗) the cone of A, denoted by cone(A).

2. We call cone(A)�A the suspension of A, denoted by ΣA.

Corollary 3. The induced suspension map Σ : K(C )→ K(C ) is a homotopy inverse for the H-space K(C ).

Proof. Note that axiom 3 gives us a cofiber sequence A � cone(A) � ΣA. Therefore, 1 � cone � Σ is an
exact sequence of functors. By the cylinder axiom, we know that cone is null-homotopic. It follows by the
additivity theorem that Σ∗ + 1 = cone∗ = ∗.

Theorem 3. (Waldhausen localization theorem) Let C be a category with cofibrations. Equip it with two
Waldhausen subcategories v(C ) and w(C ) of weak equivalences such that v(C ) ⊂ w(C ). Assume that (C , w)
admits a cylinder functor. Suppose that w(C ) is saturated and closed under extensions. Let Cw denote the
Waldhausen subcategory of (C , v) consisting of any A where ∗ → A is in w(C ) [[Are the initial morphisms
the only w.e.?]]. Then

K(Aw)→ K(C , v)→ K(C , w)

is a homotopy fibration sequence.
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Proof. Recall that a small bicategory is a bisimplicial set such that each row/column is the nerve of a
category. Note that v(−)w(−)C is a bicategory whose bimorphisms are commutative squares of the form

(−) (−)

(−) (−)

w′

v v′

w

.

It turns out that treating wC as a bicategory with a single vertical morphism proves that wC ' v(−)w(−)C .
This gives wSnC ' v(−)w(−)SnC for each n.

Now, let v(−)cow(−)C denote the subcategory of the above squares where the horizontal maps are also
cofibrations. One can show that the inclusion v(−)cow(−)C ⊂ v(−)w(−)C is a homotopy equivalence. Since
each SnC inherits a cylinder functor from C , we simplicial bi-subcategory v(−)cow(−)S•C such that the
inclusion intro v(−)w(−)S•C is a homotopy equivalence. We have now obtained the following diagram.

vS•C
w vS•C v(−)cow(−)S•C

wS•C v(−)w(−)S•C

'

'

It therefore suffices to show that the top row is a fibration. [[What about the left vertical morphism?]]
You do this by using the relative K-theory space construction. See Weibel IV.8.5.3 and V.2.1 for the
details.

Definition. Let A be an exact category embedded in an abelian category B and let Chb(A ) denote
the category of bounded chain complexes in A . One can verify that Chb(A ) is Waldhausen where the
cofibrations A• � B• are precisely the degree-wise admissible monomorphisms (i.e., those giving a short
exact sequence An → Bn → Bn�An in A for each n) and the w.e. are precisely the chain maps which are
quasi-isomorphisms of complexes in Ch(B).

Theorem 4. (Gillet-Waldhausen) Let A be an exact category closed under kernels of surjections. Then
the exact inclusion A → Chb(A ) induces a homotopy equivalence K(A ) ' KChb(A ). Hence

Ki(A ) = Ki Chb(A )

for every i.

Proof. Apply the localization theorem. See Weibel, V.2.2.

Definition. Let F : A → B be an exact functor between Waldhausen categories. We say that F satisfies
the approximate lifting property if for any map b : F (A)→ B in B, there is some map a : A→ A′ in A and
some w.e. b′ : F (A′) ' B in B so that

F (A′) B

F (A)

∼

F (a)
b .

commutes. In this way, we can lift to w.e.

Proposition 1. Let F : A → B be an exact functor between Waldhausen categories such that the following
hold.

1. F satisfies the approximate lifting property.

2. A admits a cylinder functor.
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3. A morphism f in A is a w.e. iff F (f) is a w.e. in B.

Then wF : wA → wB is a homotopy equivalence.

Corollary 4. (Waldhausen approximation theorem)

Proof. One can show that each functor SnA → SnB is exact and also has the approximate lifting prop-
erty. The previous proposition thus gives degree-wise homotopy equivalence between the bisimplicial map
wS•A → wS•B, which is enough.

Definition. Let A be an abelian category Ch(A ) denote the category of chain complexes over A . We say
that a complex C• is homologically bounded if only finitely many Hi(Cj) are nonzero. Let Chhb± denote the
subcategory of bounded below (respectively, bounded above) complexes.

Example 1. Let A be an abelian category. By homology theory, we have that Chb(A ) ⊂ Chhb− (A )
and Chhb+ (A ) ⊂ Chhb(A ) have the approximate lifting property. We also have that Chb(A ) ⊂ Chhb+ (A )
and Chhb+ (A ) ⊂ Chhb(A ) satisfy the dual of the approximate lifting property. Thus, we can apply the
approximation theorem and Gillet-Waldhausen to see that

K(A ) ' KChb(A ) ' KChhb− ' KChhb+ (A ) ' KChhb(A ).

Definition. (The following notion is due to Hovey-Shipley-Smith.) A symmetric spectrum X in topological
spaces in a sequence of based Σn-spaces (Xn) endowed with structure maps σ : Xn ∧ S1 → Xn+1 such that
σk : Xn∧Sk → Xn+k is (Σn×Σk)-equivariant for any n, k ≥ 0, where Sk := S1 ∧ · · · ∧ S1︸ ︷︷ ︸

k-times

. A map f : ~x→ Y

of symmetric spectra is a sequence (fn : Xn → Yn) of based Σn-equivariant maps such that for each n ≥ 0,
the square

Xn ∧ S1 Yn ∧ S1

Xn+1 Yn+1

σ

fn∧Id

σ

fn+1

commutes. Let SpΣ denote the category of symmetric spectra in topological spaces.

Definition. Let (C , wC ) be a Waldhausen category. The external n-fold S•-construction on C is the
n-multisimplicial Waldhausen category

(S• · · ·S•C , wS• · · ·S•C ).

It multidegree (q1, . . . , qn), it has as objects the diagrams X : Ar[q1]× · · · ×Ar[qn]→ C such that

1. X((i1, j1), . . . , (in, jn)) = ∗ if ik = jk for some 1 ≤ k ≤ n.

2. X(. . . , (it, jt), . . .) � X(. . . , (it, kt), . . .) � X(. . . , (jt, kt), . . .) is a cofiber sequence in the (n− 1)-fold
iterated S•-construction for any it ≤ jt ≤ kt in [qt].

Definition. Let (C , wC ) be a Waldhausen category. The internal n-fold S•-construction on C is the
simplicial Waldhausen category

(S(n)
• C , wS

(n)
• C ).

It has as q-simplices the functor categories (Sq · · ·SqC , wSq · · ·SqC ) whose objects are the (Ar[q])n-shaped
diagrams X : (Ar[q])n → C such that

1. X((i1, j1), . . . , (in, jn)) = ∗ if ik = jk for some 1 ≤ k ≤ n.

2. X(. . . , (it, jt), . . .) � X(. . . , (it, kt), . . .) � X(. . . , (jt, kt), . . .) is a cofiber sequence in the (n− 1)-fold
iterated S•-construction for any it ≤ jt ≤ kt in [q].

Note that Σn acts on S
(n)
• C by (π ·X)(. . . , (it, jt), . . .) = X(. . . , (iπ−1(t), jπ−1(t)), . . .).
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Definition. The (symmetric) algebraic K-theory spectrum K(C , w) of a small Waldhausen category (C , wC )
has n-th space K(C , w)n = |wS(n)

• C | based at ∗. There is a Σn-action on K(C , w)n induced by permuting
the order of the internal S•-constructions. Moreover, we have

|wS(n)
• C | ∧ S1 ∼= |wS(n)

• S•C |(1) ⊂ |wS(n)
• S•C | ∼= |wS(n+1)

• C |

, where (1) denotes the 1-skeleton with respect to the last simplicial direction. This determines the structure
map σ. Then σk is (Σn × Σk)-invariant.

Theorem 5. For any i ≥ 0, we have that Ki(C , w) = πi+1K(C , w)1 ∼= πiK(C , w).

Proof. See Rognes, Lemma 8.7.4.

Remark 3. In this way, we encode our algebraic K-theory in an infinite loop space.
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