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Abstract
We continue doing higher Waldhausen K-theory. The main sources for this talk are Chapter 8 of
Rognes, Chapter V.2 of Weibel, and nLab.

Remark 1. Recall that |wS,%| is an H-space via the map
[1: wSe%| x [wSsE| = |wSeE x wSeE| — [wS,F).

This produces an H-space structure (K (%), +).

Definition. Let % and ¥ be Waldhausen categories. We say that I’ — F — F" is a short ezact sequence
or cofiber sequence of exact functors if every F'(B) — F(B) — F"(B) is a cofiber sequence and F'(A) Ups(a)
F'(B) — F(B) is a cofibration in € for every A — B in A.

Remark 2. Let ¥ be a Waldhausen category. Let () : A — B — C be an object in S3%. Define the
source s, target ¢, and quotient ¢ functors S;% — € by s(n) = A, t(n) = B, and ¢(n) = C. Then s — t — ¢
is a cofiber sequence of functors. Since defining a cofiber sequence of exact functors & — € is equivalent to
defining an exact functor Z — S2%, we may restrict our attention to s — t — ¢ when proving things about
a given cofiber sequence of exact functors Z — ¥. We say that S3% is universal in this sense.

Theorem 1. (Extension theorem) Let 4 be Waldhausen. The exact functor (s, q) : S2% — % x € induces
a homotopy K (52%) ~ K(%) x K(%). The functor [[: (4,B) — (A — A]] B — B) is a homotopy inverse.

Proof. Let € denote the category of m-length sequences of weak equivalences. For each n, define s, %€, as
the commutative diagram

X0 X9 X0
Xi X3 X,

This is naturally isomorphic to an (m,n)-bisimplex in NywSe%, which is thus isomorphic to the bisimplicial
set s.%(qﬁ). One can show that the source s and quotient g functors S;% — % give a homotopy equivalence
S X q:8652(FY) = 354G X 346, for each m. Thus, we get a homotopy equivalence

S.SQ(%({)) ~ S.Cg(,ui) X 8.(g(ui)
between bisimplicial sets. But we already have that s.%(ﬁ) & NowS,%, completing the proof. O

Theorem 2. (The additivity theorem) Let F' — F — F" be a short exact sequence of exact functors
B — €. Then F, ~ F, 4+ F' as maps K(#B) — K(€). Hence F, = F, + F' as maps K;(%#) — K;(¥).

I

Proof. As S5% is universal, it suffices to prove that t, ~ s, +q.. Notice that the two compositions € x ¢ —

¢
S2% = € are the same. The extension theorem implies that K(]]) : K(%) x K(¢) — K(S2%) is a
qu

homotopy equivalence. Since the H-space structure on K (%) is induced by ], we get t.« >~ s. + ¢.. O



Definition. Let ¥ be Waldhausen. We say that a sequence * — A,, — -+ — Ag — % is admissibly exact if
each morphism in the sequences can be written as a cofiber sequence 4,1 — B; — A;.

Corollary 1. Suppose that * — F° — F! — ... - F"™ — x is an admissibly exact sequence of exact
functors & — ¢. Then y_,(—1)"F! = 0 as maps K;(%) — K;(¢).

Proof. Induct on n. O

Corollary 2. Let F/ — F — F" be a short exact sequence of exact functors 8 — ¢. Then
F/~F, - F,~0.
This implies that the homotopy fiber of F!' : K(#) — K(%) is homotopy equivalent to K (%) vV QK(%).

Definition. Let € be a Waldhausen category. Recall the arrow category Ar(%) of € consisting of morphisms
in € as objects and commutative squares as morphisms. Let s and ¢ denote the source and target functors
Ar(€) — €, respectively.

A functor T : Ar(¢) — € is a (mapping) cylinder functor on € if it comes equipped with natrual
transformations j; : s = T, jo : t = T, and p : T' = ¢ such that for any f : A — B, we have the commutative
diagram

AL T1(f)+2—B

N

B

Moreover, T' must satisfy the following axioms.
1. T sends every initial morphism * — A to A for any A € ob¥%.
2. j1]1j2: AII B — T(f) is a cofibration for any f: A — B.
3. Given a morphism (a,b) : f — f' in Ar(%), if both a and b are w.e. in €, then so is T'(f) — T(f').

4. Given a morphism (a,b) : f — f' in Ar(%), if both a and b are cofibrations in %, then so is T'(f) —
T(f"). Also, the map A'[],T(f) 1z B" — T(f’) induced by axiom 2 is a cofibration in €.

5. (Cylinder Axiom) The map p: T(f) — Bisa w.e. in G.
Definition. Let T be a cylinder functor on % .
1. We call T(A — x) the cone of A, denoted by cone(A).

2. We call cone(A)/A the suspension of A, denoted by Y A.
Corollary 3. The induced suspension map ¥ : K(%) — K(%) is a homotopy inverse for the H-space K (%).

Proof. Note that axiom 3 gives us a cofiber sequence A — cone(A) —» L A. Therefore, 1 — cone — X is an
exact sequence of functors. By the cylinder axiom, we know that cone is null-homotopic. It follows by the
additivity theorem that ¥, + 1 = cone, = . O

Theorem 3. (Waldhausen localization theorem) Let € be a category with cofibrations. Equip it with two
Waldhausen subcategories v(%) and w(%’) of weak equivalences such that v(%¢) C w(%). Assume that (¢, w)
admits a cylinder functor. Suppose that w(%) is saturated and closed under extensions. Let €™ denote the
Waldhausen subcategory of (€, v) consisting of any A where x — A is in w(%) [[Are the initial morphisms
the only w.e.?]]. Then

K(AY) - K(¥,v) —» K(¢,w)

is a homotopy fibration sequence.



Proof. Recall that a small bicategory is a bisimplicial set such that each row/column is the nerve of a
category. Note that v_yw_)% is a bicategory whose bimorphisms are commutative squares of the form

It turns out that treating w% as a bicategory with a single vertical morphism proves that w% ~ v_yw_)%.
This gives wS,¢ ~ v_yw_)S,% for each n.

Now, let v(_ycow(_)€ denote the subcategory of the above squares where the horizontal maps are also
cofibrations. One can show that the inclusion v(_ycow_)¢ C v_yw_)% is a homotopy equivalence. Since
each S,% inherits a cylinder functor from ¢, we simplicial bi-subcategory v(_jcow(_)Se% such that the
inclusion intro v(_yw_)S,% is a homotopy equivalence. We have now obtained the following diagram.

VSeCY —— v5,C —— v_ycow(_)SeC

| B

’LUS.C é ’U(,)’LU(,)S.C

It therefore suffices to show that the top row is a fibration. [[What about the left vertical morphism?]]
You do this by using the relative K-theory space construction. See Weibel 1V.8.5.3 and V.2.1 for the
details. 0

Definition. Let o/ be an exact category embedded in an abelian category % and let Chb(,xzi ) denote
the category of bounded chain complexes in /. One can verify that Chb(sz/ ) is Waldhausen where the
cofibrations A, ~— B, are precisely the degree-wise admissible monomorphisms (i.e., those giving a short

exact sequence A, — B, — Bn/ A, n o/ for each n) and the w.e. are precisely the chain maps which are
quasi-isomorphisms of complexes in Ch(%).

Theorem 4. (Gillet-Waldhausen) Let &7 be an exact category closed under kernels of surjections. Then
the exact inclusion &/ — Ch®(«) induces a homotopy equivalence K (/) ~ K Ch®(</). Hence

Ki(«/) = K; Ch®(«)
for every i.
Proof. Apply the localization theorem. See Weibel, V.2.2. O

Definition. Let F' : &/ — 2 be an exact functor between Waldhausen categories. We say that F' satisfies
the approxzimate lifting property if for any map b : F(A) — B in %, there is some map a : A — A’ in &/ and
some w.e. b : F(A') ~ B in £ so that

commutes. In this way, we can lift to w.e.

Proposition 1. Let F': o — % be an exact functor between Waldhausen categories such that the following
hold.

1. F satisfies the approximate lifting property.

2. o/ admits a cylinder functor.



3. A morphism f in & is a w.e. iff F(f) is a w.e. in A.
Then wF : we/ — waA is a homotopy equivalence.
Corollary 4. (Waldhausen approximation theorem)

Proof. One can show that each functor S,«/ — 5,9 is exact and also has the approximate lifting prop-
erty. The previous proposition thus gives degree-wise homotopy equivalence between the bisimplicial map
WS — wSeA, which is enough. O

Definition. Let &/ be an abelian category Ch(%7) denote the category of chain complexes over /. We say
that a complex C, is homologically bounded if only finitely many H;(C}) are nonzero. Let Ch}f denote the
subcategory of bounded below (respectively, bounded above) complexes.

Example 1. Let o be an abelian category. By homology theory, we have that Chb(JZ/ ) C Ch}ib(Jz{ )
and Ch/’(&/) ¢ Ch" (&) have the approximate lifting property. We also have that Ch”(<7) ¢ Ch!’(«)

and Chﬁb((gf ) C Chhb(@/ ) satisfy the dual of the approximate lifting property. Thus, we can apply the
approximation theorem and Gillet-Waldhausen to see that

K(o/) ~ K Ch’(«/) ~ K Ch" ~ K Ch’(&/) ~ K Ch"*(7).

Definition. (The following notion is due to Hovey-Shipley-Smith.) A symmetric spectrum X in topological
spaces in a sequence of based ¥,,-spaces (X,,) endowed with structure maps o : X,, A S L X1 such that
oF Xy ANSF = X ip is (35, x X)-equivariant for any n, k > 0, where Ski=8tA--ASL Amapf:Z—Y
~—_——
k-times
of symmetric spectra is a sequence (f,, : X;,, = Y,,) of based ¥,,-equivariant maps such that for each n > 0,

the square

X, A S Ay A gt

o| &

frng1
X1 — Yo

commutes. Let Sp™ denote the category of symmetric spectra in topological spaces.

Definition. Let (%, w%) be a Waldhausen category. The external n-fold Se-construction on € is the
n-multisimplicial Waldhausen category

(Se - SeC, WS¢+ SeC).
It multidegree (g1, ...,qn), it has as objects the diagrams X : Ar[q] x - -+ X Ar[g,] — % such that
1. X((i1,51)y- -+, (Gn,Jn)) = * if i = ji for some 1 < k < n.

2. X(oooy(igy ge)ye o) — X (oo (g ke), o) = X (oo, (Jt, ki), - ) s a cofiber sequence in the (n — 1)-fold
iterated Se-construction for any i; < j; < k; in [qq].

Definition. Let (%, w%) be a Waldhausen category. The internal n-fold Se-construction on € is the
simplicial Waldhausen category

(SMe, wsMe).

It has as ¢g-simplices the functor categories (Sq - - S4€, wSy - - - 546 ) whose objects are the (Ar[g])"-shaped
diagrams X : (Ar[g])™ — € such that

1. X((i1,51), -+, (Gn,Jn)) = * if i, = ji for some 1 < k < n.

20 X(oooy (i, ge)ye) — X (oo (igy ke)y o) = X (o oy (Je, i), - - ) s a cofiber sequence in the (n — 1)-fold
iterated Se-construction for any i; < j; < k; in [q].

Note that %, acts on S by (- X) (oo (its )y ) = X (oo (B, Jn1)) 5 - - )



Definition. The (symmetric) algebraic K -theory spectrum K(€,w) of a small Waldhausen category (€, w%)

has n-th space K(€,w), = |wS£n)‘5\ based at *. There is a 3,-action on K (%, w), induced by permuting
the order of the internal S,-constructions. Moreover, we have

|wS£n)Cg| A ST |wS£")S.<5\(1) - |wS£n)S.<€| ~ |wS£n+1)$€|

, where (1) denotes the 1-skeleton with respect to the last simplicial direction. This determines the structure
map o. Then o* is (X, x ¥j)-invariant.

Theorem 5. For any ¢ > 0, we have that K;(¢,w) = m; 11 K(€¢,w); = mK(€,w).
Proof. See Rognes, Lemma 8.7.4. O

Remark 3. In this way, we encode our algebraic K-theory in an infinite loop space.



