
Further applications of Bessel’s functions

1. Vibrations of a circularly symmetric membrane

Consider the vibrations of a circular membrane

utt = c2

(
1
r
[rur]r +

1
r2

uθθ

)
, 0 < r < a, −π < θ < π (1)

with zero boundary conditions
u(a, θ) = 0, −π < θ ≤ π (2)

and radially symmetric initial conditions

u(r, θ, 0) = u0(r); ut(r, θ, 0) = v0(r) (3)

The solution to the problem (1-3) is then radially symmetric, u(r, θ, t) = u(r, t) such that we are looking for
product solutions

u(r, t) = h(t)φ(r)

Replacing in (1) it results,
1
c2

h′′

h
=

(rφ′)′

rφ
= −λ

for some constant λ > 0 (why?) such that we have

h′′ + λc2h = 0⇒ h(t) = A cos(c
√

λt) + B sin(c
√

λt)

with A,B arbitrary constants, and

(rφ′)′ + λrφ = 0 (4)
φ(a) = 0 (5)
|φ(0)| < ∞ (6)

Using the change of variable
z =

√
λr, Φ(z) = φ(r)

the corresponding problem for Φ(z) is written

z2Φ′′ + zΦ′ + z2Φ = 0 (7)

Φ(
√

λa) = 0 (8)
|Φ(0)| < ∞ (9)

Equation (7) is a Bessel’s equation of order zero, such that its general solution is expressed in terms of the
Bessel’s functions of order zero,

Φ(z) = c1J0(z) + c2Y0(z)

Since we require Φ to be bounded at the origin, c2 = 0. Then

Φ(
√

λa) = 0⇒ J0(
√

λa) = 0⇒ λn =

(
µ

(0)
n

a

)2

, n = 1, 2, . . .

where µ
(0)
n , n = 1, 2, . . . denote the zeros of the regular Bessel’s function J0(z). Then φn(r) = J0(

√
λnr) and

product solutions u(r, t) = h(t)φ(r) are of the form

un(r, t) = An cos(c
√

λnt)J0(
√

λnr) + Bn sin(c
√

λnt)J0(
√

λnr)
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We seek for the solution to (1-3) as an infinite series

u(r, t) =
∞∑

n=1

An cos(c
√

λnt)J0(
√

λnr) + Bn sin(c
√

λnt)J0(
√

λnr) (10)

The coefficients an, bn are obtained by imposing the boundary conditions (3):

u(r, θ, 0) = u0(r)⇒
∞∑

n=1

AnJ0(
√

λnr) = u0(r)

and using the orthogonality property ∫ a

0

rJ0(
√

λnr)J0(
√

λmr) dr = 0 (11)

we get

An =

∫ a

0
ru0(r)J0(

√
λnr) dr∫ a

0
rJ2

0 (
√

λnr) dr
, n = 1, 2, . . . (12)

The second initial condition is used to find the coefficients Bn:

ut(r, θ, 0) = v0(r)⇒
∞∑

n=1

Bnc
√

λnJ0(
√

λnr) = v0(r)⇒ Bn =
1

c
√

λn

∫ a

0
rv0(r)J0(

√
λnr) dr∫ a

0
rJ2

0 (
√

λnr) dr
, n = 1, 2, . . .

(13)
The solution to the problem (1-3) is thus expressed as the infinite series (10) with the coefficients given by
(12-13).

2. Laplace’s equation in a cylinder

We consider the Laplace equation
∇2u = 0

in a cylinder of height H and radius a. Introducing the cylindrical coordinates

x = r cos θ

y = r sin θ

z = z

the Laplace’s equation is written
1
r
[rur]r +

1
r2

uθθ + uzz = 0 (14)

We assume that Dirichlet boundary conditions are prescribed on the top, bottom, and lateral surface of the
cylinder:

u(r, θ,H) = β(r, θ) (top) (15)
u(r, θ, 0) = α(r, θ) (bottom) (16)
u(a, θ, z) = γ(θ, z) (lateral boundary) (17)

To find the solution, we split the problem (14-17) into three subproblems,

u = u1 + u2 + u3
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where each of u1, u2, u3 satisfies only one nonhomogeneous boundary condition

u1(r, θ,H) = β(r, θ)

u2(r, θ, 0) = α(r, θ)

u3(a, θ, z) = γ(θ, z)

and takes zero values on the rest of the boundary. We used this approach before for the Laplace’s equation
in a rectangle. We search for product solutions of the form

u(t, θ, z) = f(r)g(θ)h(z) (18)

such that, after replacing (18) into (14),

[rf ′]′

rf
+

1
r2

g′′

g
+

h′′

h
= 0 (19)

The z-variable may be first separated,

h′′

h
= −

(
[rf ′]′

rf
+

1
r2

g′′

g

)
= λ

then,
r

f
[rf ′]′ + λr2 = −g′′

g
= µ

Corresponding to g(θ) function we impose periodic boundary conditions,

g(−π) = g(π), g′(−π) = g′(π)

such that the eigenpairs (µ, g) are

µm = m2, gm(θ) = c1 cos(mθ) = c2 sin(mθ), m = 0, 1, . . .

For each of u1, u2, u3 the differential equations

h′′ = λh (20)

r[rf ′]′ + (λr2 −m2)f = 0 (21)

must be solved with appropriate boundary conditions.

Subproblems 1 and 2

Notice that from the mathematical point of view the subproblems for u1 and u2 are quite similar, just flip
the cylinder upside down. Then is enough to study the problem for u1 which involves the Bessel’s equation
of order m:

r[rf ′]′ + (λr2 −m2)f = 0 (22)

with boundary conditions
f(a) = 0

|f(0)| <∞

From a previous analysis we know that λ > 0 and the eigenpairs (λ, f) are

λmn =

(
µ

(m)
n

a

)2

, f(r) = Jm(
√

λmnr), n = 1, 2, . . . (23)
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where µ
(m)
n , n = 1, 2, . . . denote the zeros of the Bessel’s function Jm.

The differential equation for h is
h′′ = λh (24)

and since u1 is zero on the bottom boundary z = 0, we impose h(0) = 0 such that, up to a multiplicative
constant,

h(z) = sinh(
√

λz)
The solution u1(r, θ, z) is then expressed as a series

u1(r, θ, z) =
∞∑

m=0

∞∑
n=1

Amn sinh(
√

λmnz)Jm(
√

λmnr) cos(mθ)+
∞∑

m=1

∞∑
n=1

Bmn sinh(
√

λmnz)Jm(
√

λmnr) sin(mθ)

(25)
where the coefficients Amn, Bmn are determined from the boundary condition

u1(r, θ,H) = β(r, θ)

Subproblem 3

For the u3-subproblem the differential equation for h is

h′′ = λh (26)

with boundary conditions
h(0) = 0, h(H) = 0

since u3 takes zero values on the top and bottom boundaries of the cylinder. The eigenpairs (λ, h) are then

λn = −(nπ/H)2, hn(z) = sin(nπz/H), n = 1, 2, . . . (27)

such that solutions corresponding to both θ and z variables have an oscillatory behavior (sine and cosine
functions). With λn above, the differential equation for the r − dependent solution becomes

r[rf ′]′ +
[
−(nπ/H)2r2 −m2

]
f = 0 (28)

to which we must impose
|f(0)| <∞

but there is no homogeneous condition at r = a. The change of variable

w =
nπ

H
r, F (w) = f(r)

may be used to transform (28) into a modified Bessel’s equation of order m

w2F ′′ + wF ′(−w2 −m2)F = 0 (29)

which has a solution that is well defined at w = 0, the modified Bessel’s function of order m of first kind,
Im(w), and a solution that is singular at w = 0, the modified Bessel’s function of order m of second kind,
Km(w). Then

f(r) = c1Km

(nπ

H
r
)

+ c2Im

(nπ

H
r
)

and |f(0)| <∞ implies c1 = 0.

In conclusion, the solution u3 is expressed as a double series
∞∑

m=0

∞∑
n=1

EmnIm

(nπ

H
r
)

sin
(nπz

H

)
cos(mθ) +

∞∑
m=0

∞∑
n=1

FmnIm

(nπ

H
r
)

sin
(nπz

H

)
sin(mθ) (30)

where the coefficients Emn, Fnm are determined by imposing the boundary condition u3(a, θ, z) = γ(θ, z).
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