Further applications of Bessel’s functions
1. Vibrations of a circularly symmetric membrane

Consider the vibrations of a circular membrane
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U = 2 (r[ru,«]r + r2u99> , O<r<a, —-w<bl<m (1)
with zero boundary conditions
u(a,0) =0, —1<0<Tm (2)

and radially symmetric initial conditions
U(’I"7 07 O) = Ug (T)v Ut (T‘, 07 O) =0 (7") (3)

The solution to the problem (1-3) is then radially symmetric, u(r, 8,t) = u(r,t) such that we are looking for
product solutions

u(r,t) = h(B)9(r)
Replacing in (1) it results,
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for some constant A > 0 (why?) such that we have

R + Ac?h = 0 = h(t) = Acos(cVAt) + Bsin(cVAt)
with A, B arbitrary constants, and
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Using the change of variable

z=VAr, ®(z)=¢(r)
the corresponding problem for ®(z) is written
220" 4+ 20 + 27 0
®(Va) = 0
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Equation (7) is a Bessel’s equation of order zero, such that its general solution is expressed in terms of the
Bessel’s functions of order zero,
®(2) = c1do(2) + c2Yo(2)

Since we require ¢ to be bounded at the origin, co = 0. Then
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@(ﬁa):OéJo(\/Xa):Oé/\n:(M) . on=1,2,...

where ,uslo), n=1,2,... denote the zeros of the regular Bessel’s function Jo(2). Then ¢, (r) = Jo(vA,r) and
product solutions u(r,t) = h(t)é(r) are of the form

Un (r,1) = Ay cos(eV ) Jo (VA1) + By sin(eVAut) Jo(VAur)



We seek for the solution to (1-3) as an infinite series

u(r,t) = i Ay cos(eVAnt) Jo(VAnr) 4 By sin(evV A t) Jo(VAnr)

n=1

The coefficients a,, b, are obtained by imposing the boundary conditions (3):
u(r,8,0) = up(r) = Z ApJo(V A1) = ug(r)
n=1

and using the orthogonality property
/ rJo(V An) Jo(V Ar) dir = 0
0

we get
_ IS ruo (1) Jo(V Anr) dr N
" IS rJ2(V ) dr B

The second initial condition is used to find the coefficients B,,:

1 foa o (1) Jo (VAnr) dr

u(r,0,0) = vo(r) = Z BaeVAnJo(VAnr) = vo(r) = B,

- v, foa rJg(\A"r) dr

(10)

(13)

The solution to the problem (1-3) is thus expressed as the infinite series (10) with the coefficients given by

(12-13).

2. Laplace’s equation in a cylinder

We consider the Laplace equation
Viu=0

in a cylinder of height H and radius a. Introducing the cylindrical coordinates

x = rcosf
y = rsinf
z = =z
the Laplace’s equation is written

1 1
7[74”7‘]7‘ + 2“00 + Uy, = 0
r T

(14)

We assume that Dirichlet boundary conditions are prescribed on the top, bottom, and lateral surface of the

cylinder:

u(r,0,H) = p(r,0) (top)
u(r,0,0) = «(r,0) (bottom)
u(a,0,z) = ~(0,z) (lateral boundary)

To find the solution, we split the problem (14-17) into three subproblems,

U =uy + Uz + us

(15)
(16)
(17)



where each of uq,us, us satisfies only one nonhomogeneous boundary condition
ui(r,0,H) = B(r,0)
us(r,0,0) = a(r,0)
us(a,d,z) =~(0,z2)

and takes zero values on the rest of the boundary. We used this approach before for the Laplace’s equation
in a rectangle. We search for product solutions of the form

u(t,0,z) = f(r)g(0)h(z) (18)
such that, after replacing (18) into (14),
by 1g" B _, (19)

rf r2 g h

The z-variable may be first separated,

h//_ [lrf/]/ iiﬂ _
h__< rf +7”29>_A

then,
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Corresponding to g(6) function we impose periodic boundary conditions,

such that the eigenpairs (u, g) are

tm = M2, g (0) = c1 cos(mb) = casin(mf), m=0,1,...

' = Ah (20)

For each of uy,us, ug the differential equations

]+ (0 =m?) f =0 (21)

must be solved with appropriate boundary conditions.

Subproblems 1 and 2

Notice that from the mathematical point of view the subproblems for u; and us are quite similar, just flip
the cylinder upside down. Then is enough to study the problem for u; which involves the Bessel’s equation
of order m:

rlrf) + A2 —=m?)f =0 (22)
with boundary conditions
fla)=0
1£(0)] < o0

From a previous analysis we know that A > 0 and the eigenpairs (), f) are

a

i 2
Ny = ( " ) . ) =TI (VAmr), n=1,2,... (23)
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where u%m), n=1,2 ... denote the zeros of the Bessel’s function J,,.

The differential equation for A is

W' = \h (24)
and since u; is zero on the bottom boundary z = 0, we impose h(0) = 0 such that, up to a multiplicative
constant,

h(z) = sinh(V/\z)
The solution ul(r, 8, z) is then expressed as a series

ui(r,0,z) = i i Apn sinh(ﬁmnz)Jm(\[\mnT) cos(mé)+ i i Bn sinh(\f/\mnz),]m(\[\mnr) sin(mf)

m=0n=1 m=1n=1

(25)
where the coefficients A,,,, By, are determined from the boundary condition
uy(r,0,H) = B(r,0)
Subproblem 3
For the uz-subproblem the differential equation for h is
h' = Mh (26)

with boundary conditions
h(0) =0, h(H)=0
since ug takes zero values on the top and bottom boundaries of the cylinder. The eigenpairs (A, h) are then
Ay = —(nm/H)?,  hp(2) =sin(nnz/H), n=12,... (27)

such that solutions corresponding to both 6 and z variables have an oscillatory behavior (sine and cosine
functions). With A, above, the differential equation for the r — dependent solution becomes

rlrf') + [—(nm/H)*r* —m?] f =0 (28)
to which we must impose
[£(0)] < o0

but there is no homogeneous condition at r = a. The change of variable

w="Tr Flw)=f(r)

+
may be used to transform (28) into a modified Bessgl’s equation of order m
w? " + wF' (—w? —m?)F =0 (29)

which has a solution that is well defined at w = 0, the modified Bessel’s function of order m of first kind,
I,(w), and a solution that is singular at w = 0, the modified Bessel’s function of order m of second kind,

K, (w). Then
fr)y=aK, (%Tr) + el (%TT)

and |f(0)| < oo implies ¢; = 0.

In conclusion, the solution ugz is expressed as a double series

i i Erndm (%r) sin (%) cos(mb) + i i Frndm (%r) sin (%) sin(m@) (30)
m=0n=1 m=0n=1

where the coefficients E,,,, Fpm are determined by imposing the boundary condition us(a, 8, z) = (6, 2).
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