Further applications of Bessel's functions

1. Vibrations of a circularly symmetric membrane

Consider the vibrations of a circular membrane

$$
\begin{equation*}
u_{t t}=c^{2}\left(\frac{1}{r}\left[r u_{r}\right]_{r}+\frac{1}{r^{2}} u_{\theta \theta}\right), \quad 0<r<a, \quad-\pi<\theta<\pi \tag{1}
\end{equation*}
$$

with zero boundary conditions

$$
\begin{equation*}
u(a, \theta)=0, \quad-\pi<\theta \leq \pi \tag{2}
\end{equation*}
$$

and radially symmetric initial conditions

$$
\begin{equation*}
u(r, \theta, 0)=u_{0}(r) ; \quad u_{t}(r, \theta, 0)=v_{0}(r) \tag{3}
\end{equation*}
$$

The solution to the problem (1-3) is then radially symmetric, $u(r, \theta, t)=u(r, t)$ such that we are looking for product solutions

$$
u(r, t)=h(t) \phi(r)
$$

Replacing in (1) it results,

$$
\frac{1}{c^{2}} \frac{h^{\prime \prime}}{h}=\frac{\left(r \phi^{\prime}\right)^{\prime}}{r \phi}=-\lambda
$$

for some constant $\lambda>0$ (why?) such that we have

$$
h^{\prime \prime}+\lambda c^{2} h=0 \Rightarrow h(t)=A \cos (c \sqrt{\lambda} t)+B \sin (c \sqrt{\lambda} t)
$$

with A, B arbitrary constants, and

$$
\begin{align*}
\left(r \phi^{\prime}\right)^{\prime}+\lambda r \phi & =0 \tag{4}\\
\phi(a) & =0 \tag{5}\\
|\phi(0)| & <\infty \tag{6}
\end{align*}
$$

Using the change of variable

$$
z=\sqrt{\lambda} r, \quad \Phi(z)=\phi(r)
$$

the corresponding problem for $\Phi(z)$ is written

$$
\begin{align*}
z^{2} \Phi^{\prime \prime}+z \Phi^{\prime}+z^{2} \Phi & =0 \tag{7}\\
\Phi(\sqrt{\lambda} a) & =0 \tag{8}\\
|\Phi(0)| & <\infty \tag{9}
\end{align*}
$$

Equation (7) is a Bessel's equation of order zero, such that its general solution is expressed in terms of the Bessel's functions of order zero,

$$
\Phi(z)=c_{1} J_{0}(z)+c_{2} Y_{0}(z)
$$

Since we require Φ to be bounded at the origin, $c_{2}=0$. Then

$$
\Phi(\sqrt{\lambda} a)=0 \Rightarrow J_{0}(\sqrt{\lambda} a)=0 \Rightarrow \lambda_{n}=\left(\frac{\mu_{n}^{(0)}}{a}\right)^{2}, \quad n=1,2, \ldots
$$

where $\mu_{n}^{(0)}, n=1,2, \ldots$ denote the zeros of the regular Bessel's function $J_{0}(z)$. Then $\phi_{n}(r)=J_{0}(\sqrt{\lambda} r)$ and product solutions $u(r, t)=h(t) \phi(r)$ are of the form

$$
u_{n}(r, t)=A_{n} \cos \left(c \sqrt{\lambda}_{n} t\right) J_{0}\left(\sqrt{\lambda}_{n} r\right)+B_{n} \sin \left(c \sqrt{\lambda_{n}} t\right) J_{0}\left(\sqrt{\lambda}_{n} r\right)
$$

We seek for the solution to (1-3) as an infinite series

$$
\begin{equation*}
u(r, t)=\sum_{n=1}^{\infty} A_{n} \cos \left(c \sqrt{\lambda}_{n} t\right) J_{0}\left(\sqrt{\lambda}_{n} r\right)+B_{n} \sin (c \sqrt{\lambda} n t) J_{0}\left(\sqrt{\lambda}_{n} r\right) \tag{10}
\end{equation*}
$$

The coefficients a_{n}, b_{n} are obtained by imposing the boundary conditions (3):

$$
u(r, \theta, 0)=u_{0}(r) \Rightarrow \sum_{n=1}^{\infty} A_{n} J_{0}\left(\sqrt{\lambda}_{n} r\right)=u_{0}(r)
$$

and using the orthogonality property

$$
\begin{equation*}
\int_{0}^{a} r J_{0}\left(\sqrt{\lambda}_{n} r\right) J_{0}\left(\sqrt{\lambda}_{m} r\right) d r=0 \tag{11}
\end{equation*}
$$

we get

$$
\begin{equation*}
A_{n}=\frac{\int_{0}^{a} r u_{0}(r) J_{0}\left(\sqrt{\lambda}_{n} r\right) d r}{\int_{0}^{a} r J_{0}^{2}\left(\sqrt{\lambda}_{n} r\right) d r}, \quad n=1,2, \ldots \tag{12}
\end{equation*}
$$

The second initial condition is used to find the coefficients B_{n} :

$$
\begin{equation*}
u_{t}(r, \theta, 0)=v_{0}(r) \Rightarrow \sum_{n=1}^{\infty} B_{n} c \sqrt{\lambda}_{n} J_{0}\left(\sqrt{\lambda}_{n} r\right)=v_{0}(r) \Rightarrow B_{n}=\frac{1}{c \sqrt{\lambda}_{n}} \frac{\int_{0}^{a} r v_{0}(r) J_{0}\left(\sqrt{\lambda}_{n} r\right) d r}{\int_{0}^{a} r J_{0}^{2}\left(\sqrt{\lambda}_{n} r\right) d r}, \quad n=1,2, \ldots \tag{13}
\end{equation*}
$$

The solution to the problem (1-3) is thus expressed as the infinite series (10) with the coefficients given by (12-13).

2. Laplace's equation in a cylinder

We consider the Laplace equation

$$
\nabla^{2} u=0
$$

in a cylinder of height H and radius a. Introducing the cylindrical coordinates

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
z & =z
\end{aligned}
$$

the Laplace's equation is written

$$
\begin{equation*}
\frac{1}{r}\left[r u_{r}\right]_{r}+\frac{1}{r^{2}} u_{\theta \theta}+u_{z z}=0 \tag{14}
\end{equation*}
$$

We assume that Dirichlet boundary conditions are prescribed on the top, bottom, and lateral surface of the cylinder:

$$
\begin{align*}
u(r, \theta, H) & =\beta(r, \theta) \quad(\text { top }) \tag{15}\\
u(r, \theta, 0) & =\alpha(r, \theta) \quad \text { (bottom) } \tag{16}\\
u(a, \theta, z) & =\gamma(\theta, z) \quad \text { (lateral boundary) } \tag{17}
\end{align*}
$$

To find the solution, we split the problem (14-17) into three subproblems,

$$
u=u_{1}+u_{2}+u_{3}
$$

where each of u_{1}, u_{2}, u_{3} satisfies only one nonhomogeneous boundary condition

$$
\begin{aligned}
& u_{1}(r, \theta, H)=\beta(r, \theta) \\
& u_{2}(r, \theta, 0)=\alpha(r, \theta) \\
& u_{3}(a, \theta, z)=\gamma(\theta, z)
\end{aligned}
$$

and takes zero values on the rest of the boundary. We used this approach before for the Laplace's equation in a rectangle. We search for product solutions of the form
such that, after replacing (18) into (14), $u(t, \theta, z)=f(r) g(\theta) h(z)$

$$
\begin{equation*}
\frac{\left[r f^{\prime}\right]^{\prime}}{r f}+\frac{1}{r^{2}} \frac{g^{\prime \prime}}{g}+\frac{h^{\prime \prime}}{h}=0 \tag{19}
\end{equation*}
$$

The z-variable may be first separated,

$$
\frac{h^{\prime \prime}}{h}=-\left(\frac{\left[r f^{\prime}\right]^{\prime}}{r f}+\frac{1}{r^{2}} \frac{g^{\prime \prime}}{g}\right)=\lambda
$$

then,

$$
\frac{r}{f}\left[r f^{\prime}\right]^{\prime}+\lambda r^{2}=-\frac{g^{\prime \prime}}{g}=\mu
$$

Corresponding to $g(\theta)$ function we impose periodic boundary conditions,

$$
g(-\pi)=g(\pi), g^{\prime}(-\pi)=g^{\prime}(\pi)
$$

such that the eigenpairs (μ, g) are

$$
\mu_{m}=m^{2}, g_{m}(\theta)=c_{1} \cos (m \theta)=c_{2} \sin (m \theta), \quad m=0,1, \ldots
$$

For each of u_{1}, u_{2}, u_{3} the differential equations

$$
\begin{gather*}
h^{\prime \prime}=\lambda h \tag{20}\\
r\left[r f^{\prime}\right]^{\prime}+\left(\lambda r^{2}-m^{2}\right) f=0 \tag{21}
\end{gather*}
$$

must be solved with appropriate boundary conditions.

Subproblems 1 and 2

Notice that from the mathematical point of view the subproblems for u_{1} and u_{2} are quite similar, just flip the cylinder upside down. Then is enough to study the problem for u_{1} which involves the Bessel's equation of order m :

$$
\begin{equation*}
r\left[r f^{\prime}\right]^{\prime}+\left(\lambda r^{2}-m^{2}\right) f=0 \tag{22}
\end{equation*}
$$

with boundary conditions

$$
\begin{aligned}
f(a) & =0 \\
|f(0)| & <\infty
\end{aligned}
$$

From a previous analysis we know that $\lambda>0$ and the eigenpairs (λ, f) are

$$
\begin{equation*}
\lambda_{m n}=\left(\frac{\mu_{n}^{(m)}}{a}\right)^{2}, \quad f(r)=J_{m}\left(\sqrt{\lambda}_{m n} r\right), \quad n=1,2, \ldots \tag{23}
\end{equation*}
$$

where $\mu_{n}^{(m)}, n=1,2, \ldots$ denote the zeros of the Bessel's function J_{m}.
The differential equation for h is

$$
\begin{equation*}
h^{\prime \prime}=\lambda h \tag{24}
\end{equation*}
$$

and since u_{1} is zero on the bottom boundary $z=0$, we impose $h(0)=0$ such that, up to a multiplicative constant,

$$
h(z)=\sinh (\sqrt{\lambda} z)
$$

The solution $u 1(r, \theta, z)$ is then expressed as a series
$u_{1}(r, \theta, z)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sinh \left(\sqrt{\lambda}_{m n} z\right) J_{m}\left(\sqrt{\lambda}_{m n} r\right) \cos (m \theta)+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{m n} \sinh \left(\sqrt{\lambda}_{m n} z\right) J_{m}\left(\sqrt{\lambda}_{m n} r\right) \sin (m \theta)$
where the coefficients $A_{m n}, B_{m n}$ are determined from the boundary condition

$$
u_{1}(r, \theta, H)=\beta(r, \theta)
$$

Subproblem 3

For the u_{3}-subproblem the differential equation for h is

$$
\begin{equation*}
h^{\prime \prime}=\lambda h \tag{26}
\end{equation*}
$$

with boundary conditions

$$
h(0)=0, \quad h(H)=0
$$

since u_{3} takes zero values on the top and bottom boundaries of the cylinder. The eigenpairs (λ, h) are then

$$
\begin{equation*}
\lambda_{n}=-(n \pi / H)^{2}, \quad h_{n}(z)=\sin (n \pi z / H), \quad n=1,2, \ldots \tag{27}
\end{equation*}
$$

such that solutions corresponding to both θ and z variables have an oscillatory behavior (sine and cosine functions). With λ_{n} above, the differential equation for the r-dependent solution becomes

$$
\begin{equation*}
r\left[r f^{\prime}\right]^{\prime}+\left[-(n \pi / H)^{2} r^{2}-m^{2}\right] f=0 \tag{28}
\end{equation*}
$$

to which we must impose

$$
|f(0)|<\infty
$$

but there is no homogeneous condition at $r=a$. The change of variable

$$
w=\frac{n \pi}{H} r, \quad F(w)=f(r)
$$

may be used to transform (28) into a modified Bessel's equation of order m

$$
\begin{equation*}
w^{2} F^{\prime \prime}+w F^{\prime}\left(-w^{2}-m^{2}\right) F=0 \tag{29}
\end{equation*}
$$

which has a solution that is well defined at $w=0$, the modified Bessel's function of order m of first kind, $I_{m}(w)$, and a solution that is singular at $w=0$, the modified Bessel's function of order m of second kind, $K_{m}(w)$. Then

$$
f(r)=c_{1} K_{m}\left(\frac{n \pi}{H} r\right)+c_{2} I_{m}\left(\frac{n \pi}{H} r\right)
$$

and $|f(0)|<\infty$ implies $c_{1}=0$.
In conclusion, the solution u_{3} is expressed as a double series

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} E_{m n} I_{m}\left(\frac{n \pi}{H} r\right) \sin \left(\frac{n \pi z}{H}\right) \cos (m \theta)+\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} F_{m n} I_{m}\left(\frac{n \pi}{H} r\right) \sin \left(\frac{n \pi z}{H}\right) \sin (m \theta) \tag{30}
\end{equation*}
$$

where the coefficients $E_{m n}, F_{n m}$ are determined by imposing the boundary condition $u_{3}(a, \theta, z)=\gamma(\theta, z)$.

