Math 241-910 Calculus IV
Name: \qquad
Summer 2017
Quiz 3
6/13/2017
Time Limit: 60 Minutes

This exam contains 6 pages (including this cover page) and 4 questions.
Total of points is 60 .
Grade Table (for teacher use only)

Question	Points	Score
1	15	
2	15	
3	15	
4	15	
Total:	60	

1. (15 points) Consider the equation

$$
\begin{equation*}
\phi^{\prime \prime}(x)-2 \phi^{\prime}(x)+\lambda(1+x) \phi(x)=0, \quad 0 \leq x \leq 2 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\phi^{\prime}(0)=\phi(2)=2 \tag{2}
\end{equation*}
$$

1. Is this a regular Strum Liouville problem? What are the $p(x), q(x), \sigma(x)$ respectively?
2. Show that $\lambda \geq 0$.
3. Is $\lambda=0$ an eigenvalue?
4. If

$$
\begin{equation*}
a_{n}=\int_{0}^{2}\left(3 x^{2}+1\right)(1+x) e^{-2 x} \phi_{n}(x) d x \tag{3}
\end{equation*}
$$

calculate

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{n} \cdot \phi_{n}(1) \tag{4}
\end{equation*}
$$

2. (15 points) Consider a Sturm-Liouville eigenvalue problem

$$
\begin{equation*}
\left(p \phi^{\prime}\right)^{\prime}+q \phi+\lambda \sigma \phi=0, \quad x \in[1,2] \tag{5}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\phi(1)=0=\phi^{\prime}(2) . \tag{6}
\end{equation*}
$$

Prove the orthogonality of eigenfunctions of this problem. (Hint: use Green's formula).
3. (15 points) Let $\omega \subset \mathbb{R}^{3}$ be a bounded domain with smooth boundary. Let $u(x, y, z, t)$ be a solution to the wave equation

$$
\begin{align*}
u_{t t} & =\Delta u-u \quad \text { in } \Omega \tag{7}\\
u & =0 \quad \text { on } \partial \Omega \tag{8}
\end{align*}
$$

where $\Delta u=u_{x x}+u_{y y}+u_{z z}$. Define the energy $E(t)$ of this solution by

$$
\begin{equation*}
E(t)=\frac{1}{2} \iiint_{\Omega} u_{t}^{2}+|\nabla u|^{2}+u^{2} d V \tag{9}
\end{equation*}
$$

1. Show that $E(t)$ is a constant.
2. Use a) to prove that a solution to the above wave equation with given initial condition $\left(u(x, y, z, 0)\right.$ and $\left.u_{t}(x, y, z, 0)\right)$ is unique. Hint: Suppose that u and v are two such solutions, and study the energy of $w=u-v$.
3. (15 points) The vertical displacement $u(r \theta, t)$ of a vibrating circular membrane of radius $r_{0}=1$,fixed at the boundary, satisfies the wave equation

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}, \quad r \in[0,1], \theta \in[-\pi, \pi], t \geq 0 \tag{10}\\
u(1, \theta, t)=0) \tag{11}
\end{gather*}
$$

Let $J_{0}(z)$ be the 0 -th Bessel function of the first kind, and denote its zeroes by $z_{01}<$ $z_{02}<z_{03}<\cdots<z_{0 m}<\cdots$. Find a formula for the solution $u(r, \theta, t)$ subject to the initial conditions

$$
\begin{equation*}
u(r, \theta, 0)=0, \quad u_{t}(r, \theta, 0)=\sum_{m=1}^{\infty} \frac{1}{m^{2}} J_{0}\left(z_{0 m} r\right) \tag{12}
\end{equation*}
$$

You may assume without explanations that separating variables $u(r, \theta, t)=R(r) V(\theta) T(t)$ for the above PDE gives the following ODEs:

$$
\begin{equation*}
T^{\prime \prime}+\lambda T=0, \quad V^{\prime \prime}+\mu V=0, \quad r\left(r R^{\prime}\right)^{\prime}+\left(\lambda r^{2}-\mu\right) R=0, \quad \lambda \geq 0, \mu \geq 0 \tag{13}
\end{equation*}
$$

Some useful formulas

1. Rayleigh quotient of regular S - L :

$$
\begin{equation*}
\lambda=\frac{-\left.p \phi \phi^{\prime}\right|_{a} ^{b}+\int_{a}^{b}\left[p \phi^{\prime 2}-q \phi^{2}\right] d x}{\int_{a}^{b} \phi^{2} \sigma d x} \tag{14}
\end{equation*}
$$

2. Rayleigh quotient of Helmholtz equation:

$$
\begin{equation*}
\lambda=\frac{-\oint \phi \nabla \phi \cdot \hat{n} d x+\iint_{R}|\nabla \phi|^{2} d x d y}{\iint_{R} \phi^{2} d x} \tag{15}
\end{equation*}
$$

3. Green's formula for regular S - L :

$$
\begin{equation*}
\int_{a}^{b}(u L(v)-v L(u)) d x=\left.p\left(u v^{\prime}-u^{\prime} v\right)\right|_{a} ^{b} \tag{16}
\end{equation*}
$$

where $L=\frac{d}{d x}\left(p \frac{d}{d x}\right)+q$.
4. Bessel functions:

- 1st kind of order m: $J_{m}(z)$. For small z (i.e. $z \rightarrow 0$)

$$
J_{m}(z) \sim \begin{cases}1 & m=0 \tag{17}\\ \frac{1}{2^{m} m!} z^{m} & m>0\end{cases}
$$

- 2nd kind of order m: $Y_{m}(z)$. For small z (i.e. $z \rightarrow 0$)

$$
J_{m}(z) \sim \begin{cases}\frac{2}{\pi} \ln z & m=0 \tag{18}\\ -\frac{2^{m}(m-1)!}{\pi} z^{-m} & m>0\end{cases}
$$

