Sturm-Liouville Eigenvalue Problems

Motivation

The heat flow in a nonuniform rod is modeled by the partial differential equation

$$
\begin{equation*}
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+Q \tag{1}
\end{equation*}
$$

where the thermal coefficients c, ρ, K_{0} are functions of x. If we further assume that the heat source Q is proportional to the temperature $u, Q=\alpha(x) u$, then (1) is written

$$
\begin{equation*}
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)+\alpha u \tag{2}
\end{equation*}
$$

Assuming that homogeneous boundary conditions are specified, the method of separation of variables may be used to solve (2). If we consider

$$
\begin{equation*}
u(x, t)=\Phi(x) G(t) \tag{3}
\end{equation*}
$$

then the variables may be separated

$$
\begin{equation*}
\frac{1}{G} \frac{d G}{d t}=\frac{1}{c \rho \Phi} \frac{d}{d x}\left(K_{0} \frac{d \Phi}{d x}\right)+\frac{\alpha}{c \rho}=-\lambda \tag{4}
\end{equation*}
$$

such that we obtain the differential equations

$$
\begin{gather*}
\frac{d G}{d t}=-\lambda G \tag{5}\\
\frac{d}{d x}\left(K_{0} \frac{d \Phi}{d x}\right)+\alpha \Phi+\lambda c \rho \Phi=0 \tag{6}
\end{gather*}
$$

This motivates the study of a general class of differential equations

$$
\begin{equation*}
\frac{d}{d x}\left(p \frac{d \Phi}{d x}\right)+q \Phi+\lambda \sigma \Phi=0 \tag{7}
\end{equation*}
$$

with appropriate boundary conditions. Equation (7) is known as a Sturm-Liouville differential equation.
Various types of linear homogeneous boundary conditions may be specified:

- First kind (Dirichlet): $\Phi=0$
- Second kind (Neumann): $\frac{d \Phi}{d x}=0$
- Third kind (Robin): $\frac{d \Phi}{d x}= \pm h \Phi$
- Periodicity condition: $\Phi(-L)=\Phi(L) ; \frac{d \Phi}{d x}(-L)=\frac{d \Phi}{d x}(L)$
- Singularity condition: $|\Phi(0)|<\infty$

A Sturm-Liouville eigenvalue problem consists of the Sturm-Liouville differential equation

$$
\begin{equation*}
\frac{d}{d x}\left(p \frac{d \Phi}{d x}\right)+q \Phi+\lambda \sigma \Phi=0, \quad a<x<b \tag{8}
\end{equation*}
$$

subject to the boundary conditions of the type

$$
\begin{align*}
& \beta_{1} \Phi(a)+\beta_{2} \frac{d \Phi}{d x}(a)=0 \tag{9}\\
& \beta_{3} \Phi(b)+\beta_{4} \frac{d \Phi}{d x}(b)=0 \tag{10}
\end{align*}
$$

where $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are real constants. Notice that the periodicity condition is not of the form (9-10). The Sturm-Liouville eigenvalue problem (8), (9-10) is called regular if the coefficients p, q, σ are real and continuous in $[a, b]$ and $p(x)>0, \sigma(x)>0$ for all $x \in[a, b]$.

For any regular Sturm-Liouville problem, the following theorems are valid:

1. All the eigenvalue are real
2. There exists an infinite number of eigenvalues

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\lambda_{n+1}<\ldots
$$

a. There is a smallest eigenvalue, λ_{1}.
b. There is not a largest eigenvalue and $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$
3. Corresponding to each eigenvalue λ_{n}, there is an eigenfunction $\Phi_{n}(x)$ which is unique up to an arbitrary multiplicative constant. In addition, $\Phi_{n}(x)$ has exactly $n-1$ zeros in the interval (a, b).
4. Any piecewise smooth function $f(x)$ can be represented by a generalized Fourier series of the eigenfunctions

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \Phi_{n}(x)
$$

that converges to $[f(x+)+f(x-)] / 2$ for $a<x<b$ if the coefficients are a_{n} are properly selected.
5. Eigenfunctions corresponding to different eigenvalues are orthogonal relative to the weight function $\sigma(x)$

$$
\begin{equation*}
\int_{a}^{b} \Phi_{n}(x) \Phi_{m}(x) \sigma(x) d x=0 \quad \text { if } \quad \lambda_{n} \neq \lambda_{m} \tag{11}
\end{equation*}
$$

6. Any eigenvalue can be related to its eigenfunction by the Rayleigh quotient

$$
\begin{equation*}
\lambda=\frac{-\left.p \Phi \frac{d \Phi}{d x}\right|_{a} ^{b}+\int_{a}^{b}\left[p\left(\frac{d \Phi}{d x}\right)^{2}-q \Phi^{2}\right] d x}{\int_{a}^{b} \Phi^{2} \sigma d x} \tag{12}
\end{equation*}
$$

Q: Prove the Rayleigh quotient relation (12).

Q: Prove the orthogonality property (11).

A simple example

Consider the Sturm-Liouville problem

$$
\begin{align*}
\frac{d^{2} \Phi}{d x^{2}}+\lambda \Phi & =0 \tag{13}\\
\Phi(0) & =0 \tag{14}\\
\Phi(L) & =0 \tag{15}
\end{align*}
$$

This is a particular case of the Sturm-Liouville problem (8), (9-10) with the coefficients $p(x) \equiv 1, q(x) \equiv$ $0, \sigma(x) \equiv 1, \beta_{1}=1, \beta_{2}=0, \beta_{3}=1, \beta_{4}=0$. We know that the real eigenvalues are

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, n=1,2, \ldots
$$

and the corresponding eigenfunctions are

$$
\Phi_{n}(x)=\sin \frac{n \pi x}{L}, n=1,2, \ldots
$$

Q: Prove Theorem 1 (all eigenvalues are real) for problem (13-15).

Series of eigenfunctions

Theorem 4 shows that any piecewise smooth function may be represented by a generalized Fourier series of the eigenfunctions

$$
\begin{equation*}
f(x) \sim \sum_{n=1}^{\infty} a_{n} \Phi_{n}(x) \tag{16}
\end{equation*}
$$

Q: Using the orthogonality of the eigenfunctions (Theorem 5) show that the generalized Fourier coefficients are

$$
a_{m}=\frac{\int_{a}^{b} f(x) \Phi_{m}(x) \sigma(x) d x}{\int_{a}^{b} \Phi_{m}^{2}(x) \sigma(x) d x}
$$

Q: For the example (13-15) show that Theorem 6 directly imply that all eigenvalues are positive $(\lambda>0)$.
Another example: heat flow in a nonuniform rod without sources
Consider the problem

$$
\begin{gather*}
c \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right) \tag{17}\\
u(0, t)=0 \tag{18}\\
\frac{\partial u}{\partial x}(L, t)==0 \tag{19}\\
u(x, 0)=f(x) \tag{20}
\end{gather*}
$$

where the thermal coefficients c, ρ, K_{0} are functions of x.
Using separation of variables

$$
u(x, t)=\Phi(x) G(t)
$$

we obtain for the time dependent component the differential equation

$$
\frac{d G}{d t}=-\lambda G \Rightarrow G(t)=c e^{-\lambda t}
$$

and for the space dependent component the Sturm-Liouville eigenvalue problem

$$
\begin{align*}
\frac{d}{d x}\left(K_{0} \frac{d \Phi}{d x}\right) & +\lambda c \rho \Phi=0 \tag{21}\\
\Phi(0) & =0 \tag{22}\\
\frac{d \Phi}{d x}(L) & =0 \tag{23}
\end{align*}
$$

For this problem we know that there is an infinite sequence of eigenvalues λ_{n}.
Q: Using the Rayleigh quotient, prove that all eigenvalues are positive.
If Φ_{n} is the eigenfunction corresponding to λ_{n}, then we obtain product solutions of the form

$$
u(x, t)=\Phi_{n}(x) c e^{-\lambda_{n} t}
$$

and using the principle of superposition we write the general solution as

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \Phi_{n}(x) e^{-\lambda_{n} t}
$$

To satisfy the initial condition (20) we must have

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \Phi_{n}(x)
$$

and using the orthogonality of the eigenfunctions we obtain the generalized Fourier coefficients

$$
a_{n}=\frac{\int_{0}^{L} f(x) \Phi_{n}(x) c(x) \rho(x) d x}{\int_{0}^{L} \Phi_{n}^{2}(x) c(x) \rho(x) d x}
$$

Self-adjoint operators

Consider the Sturm-Liouville operator

$$
\begin{equation*}
L(\Phi)=\frac{d}{d x}\left(p \frac{d \Phi}{d x}\right)+q \Phi \tag{24}
\end{equation*}
$$

as a linear operator defined on the space of functions $\Phi(x)$ that satisfy the homogeneous boundary conditions

$$
\begin{equation*}
\beta_{1} \Phi(a)+\beta_{2} \frac{d \Phi}{d x}(a)=0 \quad \beta_{3} \Phi(b)+\beta_{4} \frac{d \Phi}{d x}(b)=0 \tag{25}
\end{equation*}
$$

The Sturm-Liouville eigenvalue problem is then written

$$
\begin{equation*}
L(\Phi)+\lambda \sigma(x) \Phi=0 \tag{26}
\end{equation*}
$$

and properties of the eigenvalues and eigenfunctions are obtained from the study of the operator (24).

Q: Show that for any smooth functions $u(x)$ and $v(x)$ the following properties hold:

- Lagrange's identity (differential form)

$$
\begin{equation*}
u L(v)-v L(u)=\frac{d}{d x}\left[p\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)\right] \tag{27}
\end{equation*}
$$

- Green's formula (integral form of Lagrange's identity)

$$
\begin{equation*}
\int_{a}^{b}[u L(v)-v L(u)] d x=\left.p\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)\right|_{a} ^{b} \tag{28}
\end{equation*}
$$

Definition: An operator L is called self-adjoint if for any functions u and v in the domain of definition

$$
\begin{equation*}
\int_{a}^{b}[u L(v)-v L(u)] d x=0 \tag{29}
\end{equation*}
$$

Q: Show that the operator (24) is self-adjoint on the space of functions that satisfy boundary conditions (25).

Orthogonal eigenfunctions: eigenfunctions corresponding to distinct eigenvalues are orthogonal

$$
\begin{array}{lll}
L\left(\Phi_{n}\right)+\lambda_{n} \sigma(x) \Phi_{n}=0 & \mid \cdot \Phi_{m} & \int_{a}^{b} \\
L\left(\Phi_{m}\right)+\lambda_{m} \sigma(x) \Phi_{m}=0 & \mid \cdot \Phi_{n} & \int_{a}^{b}
\end{array}
$$

After subtracting the relations above and using the fact that L is self-adjoint, we get

$$
\begin{equation*}
\left(\lambda_{m}-\lambda_{n}\right) \int_{a}^{b} \Phi_{n} \Phi_{m} \sigma(x) d x=0 \tag{30}
\end{equation*}
$$

and since $\lambda_{m} \neq \lambda_{m}$, the eigenfunctions must be orthogonal

$$
\begin{equation*}
\int_{a}^{b} \Phi_{n} \Phi_{m} \sigma(x) d x=0 \tag{31}
\end{equation*}
$$

Real eigenvalues: the eigenvalues of a self-adjoint operator are real.

Proof by contradiction, assume that

$$
L(\Phi)=\lambda \sigma(x) \Phi
$$

where λ is a complex number. Then the complex conjugate $\bar{\lambda}$ is also an eigenvalue with the corresponding eigenfunction $\bar{\Phi}$

$$
L(\bar{\Phi})=\bar{\lambda} \sigma(x) \bar{\Phi}
$$

Using the relation (30) for $\Phi_{n}=\Phi, \Phi_{m}=\bar{\Phi}$ we get

$$
\begin{equation*}
(\lambda-\bar{\lambda}) \int_{a}^{b} \Phi \bar{\Phi} \sigma(x) d x=0 \tag{32}
\end{equation*}
$$

Since $\Phi \bar{\Phi}=|\Phi|^{2}$ and $\sigma(x)>0$ the equation above implies $\lambda=\bar{\lambda}$ such that the eigenvalues are real.

Unique eigenfunctions: The eigenfunctions associated to an eigenvalue are unique, up to a multiplicative constant (e.g., the eigenspace associated to each eigenvalue is of dimension one).

Proof: assume that Φ_{1} and Φ_{2} are eigenfunctions associated to the same eigenvalue λ :

$$
\begin{array}{ll}
L\left(\Phi_{1}\right)+\lambda \sigma(x) \Phi_{1}=0 & \mid \cdot \Phi_{2} \\
L\left(\Phi_{2}\right)+\lambda \sigma(x) \Phi_{2}=0 & \mid \cdot \Phi_{1}
\end{array}
$$

After subtracting the relations above we get

$$
\begin{equation*}
\Phi_{2} L\left(\Phi_{1}\right)-\Phi_{1} L\left(\Phi_{2}\right)=0 \tag{33}
\end{equation*}
$$

Q: Using Lagrange's identity (27) show that (33) (25) imply

$$
\frac{d}{d x}\left(\Phi_{2} / \Phi_{1}\right)=0
$$

such that

$$
\Phi_{2}=c \Phi_{1}
$$

and the eigenfunctions are linearly dependent.

Section 5.6: Rayleigh quotient and the minimization principle

Consider the eigenvalue problem

$$
\begin{equation*}
L \phi(x)+\lambda \sigma(x) \phi(x)=0, \quad a<x<b \tag{34}
\end{equation*}
$$

where L is a Sturm-Liouville operator,

$$
L \phi=\left[p(x) \phi^{\prime}(x)\right]^{\prime}+q(x) \phi(x)
$$

defined for functions that satisfy the boundary conditions

$$
\begin{equation*}
\beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0, \quad \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 \tag{35}
\end{equation*}
$$

The Rayleigh quotient provides the eigenvalues in terms of the eigenfunctions, as

$$
\begin{equation*}
\lambda=\frac{-\int_{a}^{b} \phi L \phi d x}{\int_{a}^{b} \sigma \phi^{2} d x} \tag{36}
\end{equation*}
$$

For an arbitrary function $u \in C^{1}([a, b])$ that satisfies the boundary conditions (35) we define the Rayleigh quotient as

$$
\begin{equation*}
\mathcal{R}(u)=\frac{-\int_{a}^{b} u L u d x}{\int_{a}^{b} \sigma u^{2} d x} \tag{37}
\end{equation*}
$$

Next we show that the lowest (first) eigenvalue satisfies the minimization principle

$$
\begin{equation*}
\lambda_{1}=\min _{u} \mathcal{R}(u) \tag{38}
\end{equation*}
$$

Proof: Given a function u, we consider the series representation

$$
u(x)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)
$$

We know that eigenfunctions corresponding to distinct eigenvalues are orthogonal and we may assume that in addition ϕ_{n} are orthonormal

$$
\begin{equation*}
\int_{a}^{b} \sigma \phi_{n} \phi_{m} d x=0 \text { if } m \neq n, \quad \int_{a}^{b} \sigma \phi_{n}^{2} d x=1 \tag{39}
\end{equation*}
$$

The Rayleigh quotient (37) is then written

$$
\mathcal{R}(u)=\frac{-\int_{a}^{b}\left(\sum_{n=1}^{\infty} a_{n} \phi_{n}\right)\left(-\sum_{n=1}^{\infty} a_{n} \lambda_{n} \sigma \phi_{n}\right) d x}{\int_{a}^{b}\left(\sum_{n=1}^{\infty} a_{n} \sigma \phi_{n}\right)\left(\sum_{n=1}^{\infty} a_{n} \phi_{n}\right) d x}
$$

and using the orthogonality of the eigenfunctions (39) we may simplify the relation above to

$$
\mathcal{R}(u)=\frac{\sum_{n=1}^{\infty} \lambda_{n} a_{n}^{2}}{\sum_{n=1}^{\infty} a_{n}^{2}}
$$

If the eigenvalues are ordered such that $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \leq \ldots$ then $\lambda_{n} a_{n}^{2} \geq \lambda_{1} a_{n}^{2}$ such that from the equation above we get

$$
\mathcal{R}(u) \geq \lambda_{1} \frac{\sum_{n=1}^{\infty} a_{n}^{2}}{\sum_{n=1}^{\infty} a_{n}^{2}}=\lambda_{1}
$$

which proves the minimization principle (38). Notice that equality can be achieved only if $\lambda_{n} a_{n}^{2}=\lambda_{1} a_{n}^{2}$ for all $n \geq 2$ which is possible if and only if $a_{n}=0, n \geq 2$ such that the Rayleigh quotient (37) is minimized only when $u=a_{1} \phi_{1}$.

Q: The minimization principle can be generalized to higher rank eigenvalues. If we define the spaces of functions

$$
\begin{gathered}
\mathcal{V}=\left\{u \in C^{1}([a, b]), \quad \beta_{1} u(a)+\beta_{2} u^{\prime}(a)=0, \quad \beta_{3} u(b)+\beta_{4} u^{\prime}(b)=0\right\} \\
\mathcal{V}_{k}=\left\{u \in \mathcal{V}, \int_{a}^{b} \sigma u \phi_{i} d x=0, \quad i=1,2, \ldots k\right\}
\end{gathered}
$$

prove that the following minimization property holds:

$$
\begin{equation*}
\lambda_{k+1}=\min _{u \in \mathcal{V}_{k}} \mathcal{R}(u), \quad k \geq 1 \tag{40}
\end{equation*}
$$

Q: Prove that if $u \in C^{2}([a, b])$ solves the minimization problem

$$
\min _{u \in \mathcal{V}}\left[-\frac{1}{2} \int_{a}^{b} u L u d x+\int_{a}^{b} u f d x\right]
$$

then u solves the nonhomogeneous problem

$$
L u=f
$$

Q: Consider the Poisson problem in a domain $\Omega \subset R^{n}$ with boundary S

$$
\begin{array}{rlrl}
\Delta u & =f, & x \in \Omega \\
u & =0, & & x \in S \tag{42}
\end{array}
$$

What minimization problem does u solve? Give a physical interpretation.

