Sturm-Liouville Eigenvalue Problems

Motivation

The heat flow in a nonuniform rod is modeled by the partial differential equation
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where the thermal coefficients c, p, Ky are functions of x. If we further assume that the heat source @ is
proportional to the temperature u, @ = «(x)u, then (1) is written
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Assuming that homogeneous boundary conditions are specified, the method of separation of variables may
be used to solve (2). If we consider
u(z,t) = ©(z)G(t) (3)
then the variables may be separated
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such that we obtain the differential equations
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This motivates the study of a general class of differential equations
d dd
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with appropriate boundary conditions. Equation (7) is known as a Sturm-Liouville differential equation.
Various types of linear homogeneous boundary conditions may be specified:

e First kind (Dirichlet): ® =0

Second kind (Neumann): 42 =0

e Third kind (Robin): 42 = +h®

e Periodicity condition: ®(—L) = ®(L); 42(—L) = 42(L)
e Singularity condition: |®(0)] < co

A Sturm-Liouville eigenvalue problem consists of the Sturm-Liouville differential equation

de \Pdz
subject to the boundary conditions of the type
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where 1, B2, 03, 84 are real constants. Notice that the periodicity condition is not of the form (9-10). The
Sturm-Liouville eigenvalue problem (8), (9-10) is called regular if the coefficients p, ¢, o are real and contin-
uous in [a, b] and p(x) > 0,0(x) > 0 for all = € [a, b)].

For any regular Sturm-Liouville problem, the following theorems are valid:

1. All the eigenvalue are real
2. There exists an infinite number of eigenvalues
AL <A <. o< A <A1 <.
a. There is a smallest eigenvalue, A;.
b. There is not a largest eigenvalue and \,, — oo as n —
3. Corresponding to each eigenvalue A, there is an eigenfunction ®,,(z) which is unique up to an arbitrary
multiplicative constant. In addition, ®,,(z) has exactly n — 1 zeros in the interval (a,b).
4. Any piecewise smooth function f(z) can be represented by a generalized Fourier series of the eigen-
functions -
flz) ~ Z an®n(z)
n=1
that converges to [f(xz+) + f(x—)]/2 for a < z < b if the coefficients are a,, are properly selected.
5. Eigenfunctions corresponding to different eigenvalues are orthogonal relative to the weight function
o(x)
b
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6. Any eigenvalue can be related to its eigenfunction by the Rayleigh quotient
—p® )+ [) [p(52)° - ¢0?] do
A= 5 (12)
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Q: Prove the Rayleigh quotient relation (12).
Q: Prove the orthogonality property (11).
A simple example
Consider the Sturm-Liouville problem
d*®
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®0) = 0 (14)
o(L) = 0 (15)

This is a particular case of the Sturm-Liouville problem (8), (9-10) with the coefficients p(z) = 1, g(x)

0,0(x)=1,01=1,8,=0,03 = 1,84 = 0. We know that the real eigenvalues are

2
An:(%) n=12,. ..



and the corresponding eigenfunctions are
nmwL
B, () = sin == n=1,2,...
(z) = sin 70
Q: Prove Theorem 1 (all eigenvalues are real) for problem (13-15).
Series of eigenfunctions

Theorem 4 shows that any piecewise smooth function may be represented by a generalized Fourier series of
the eigenfunctions

fx) ~ Z an®p(z) (16)

Q: Using the orthogonality of the eigenfunctions (Theorem 5) show that the generalized Fourier coefficients
are

L F @) (@)o(x)de
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Q: For the example (13-15) show that Theorem 6 directly imply that all eigenvalues are positive (A > 0).
Another example: heat flow in a nonuniform rod without sources

Consider the problem

=2 (ngj) (17)
w(0,8) = 0 (18)

ou
(L) = = 0 (19)
u(z,0) = () (20)

where the thermal coefficients ¢, p, K are functions of x.
Using separation of variables
u(z,t) = ®(x)G(t)

we obtain for the time dependent component the differential equation

dG e
T AG = G(t) = ce

and for the space dependent component the Sturm-Liouville eigenvalue problem

% (Ko(jli) +Acp® =0 (21)
®0) = 0 (22)
%(L) ~ 0 (23)

For this problem we know that there is an infinite sequence of eigenvalues \,,.
Q: Using the Rayleigh quotient, prove that all eigenvalues are positive.

If ®,, is the eigenfunction corresponding to A,, then we obtain product solutions of the form



u(z,t) = @, (z)ce Mt

and using the principle of superposition we write the general solution as
(o]
u(zx,t) = Z an®y, (z)e At
n=1
To satisfy the initial condition (20) we must have
o0
flx) = Z P (2)
n=1

and using the orthogonality of the eigenfunctions we obtain the generalized Fourier coefficients
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Self-adjoint operators
Consider the Sturm-Liouville operator
d dd
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as a linear operator defined on the space of functions ®(x) that satisfy the homogeneous boundary conditions

() + B (@) =0 FsB() + B (1) =0 (25)

The Sturm-Liouville eigenvalue problem is then written
L(®)+ Ao(z)®=0 (26)

and properties of the eigenvalues and eigenfunctions are obtained from the study of the operator (24).

Q: Show that for any smooth functions u(z) and v(z) the following properties hold:

e Lagrange’s identity (differential form)
d d d
uL(v) —vL(u) = Tz {p <ud; - @c/az)] (27)
e Green’s formula (integral form of Lagrange’s identity)

/ab[uL(v) —vL(w)]dz = p (ugfc - v;iD

DEFINITION: An operator L is called self-adjoint if for any functions v and v in the domain of definition

(28)

b
/ [uL(v) — vL(u)]dz =0 (29)



Q: Show that the operator (24) is self-adjoint on the space of functions that satisfy boundary conditions (25).

Orthogonal eigenfunctions: eigenfunctions corresponding to distinct eigenvalues are orthogonal
b
L(®,) + Ao (@) By =0 |- @, /
a

b
L(®y) + Ao (2)Bpy =0 |- By, /

After subtracting the relations above and using the fact that L is self-adjoint, we get

o — An) /b By (z)dz = 0 (30)

and since \,, # A\, the eigenfunctions must be orthogonal

/b B, B0 (z) da = 0 (31)

Real eigenvalues: the eigenvalues of a self-adjoint operator are real.

Proof by contradiction, assume that
L(®) = Ao (z)D

where A is a complex number. Then the complex conjugate ) is also an eigenvalue with the corresponding
eigenfunction ® o -
L(®) = Ao (z)P

Using the relation (30) for ®,, = ®, ®,, = ® we get

(A=) /b OBo(z)da = 0 (32)

Since ®® = |®|2 and o(z) > 0 the equation above implies A = A such that the eigenvalues are real.

Unique eigenfunctions: The eigenfunctions associated to an eigenvalue are unique, up to a multiplicative
constant (e.g., the eigenspace associated to each eigenvalue is of dimension one).

Proof: assume that ®; and ®, are eigenfunctions associated to the same eigenvalue A:

L(‘I’l) + )\O’(l‘)‘bl =0 | - Py
L(®2) + Ao(z)P2 =0 |- @
After subtracting the relations above we get
Oy L(Pq) — D1 L(P3) =0 (33)
Q: Using Lagrange’s identity (27) show that (33) (25) imply

d
7 ($2/®1) =0

such that
(I)2 = C(I)l

and the eigenfunctions are linearly dependent.



Section 5.6: Rayleigh quotient and the minimization principle

Consider the eigenvalue problem
Lo(z) + Ao(x)p(z) =0, a<z<b (34)
where L is a Sturm-Liouville operator,
Lé = [p(x)¢' ()] + q(x)(x)

defined for functions that satisfy the boundary conditions

Bid(a) + B2’ (a) =0,  B3(b) + B1d'(b) =0 (35)
The Rayleigh quotient provides the eigenvalues in terms of the eigenfunctions, as
b
— Lod
A= o OLodz (36)
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For an arbitrary function u € C*([a,b]) that satisfies the boundary conditions (35) we define the Rayleigh
quotient as

b
— [ uLudx
R(u) = ——— (37)
[, ou?dx
Next we show that the lowest (first) eigenvalue satisfies the minimization principle
A1 = minR(u) (38)
u

Proof: Given a function u, we consider the series representation

n=1

We know that eigenfunctions corresponding to distinct eigenvalues are orthogonal and we may assume that
in addition ¢,, are orthonormal

b b
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The Rayleigh quotient (37) is then written

=y (s and) (= Sonty anAaon) da
(00 anodn) (20 andn) dao

and using the orthogonality of the eigenfunctions (39) we may simplify the relation above to

ZZC:1 )‘nai
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If the eigenvalues are ordered such that A\; < Ay < ... < A\, < ... then \,a? > A\ja? such that from the
equation above we get

D one1 O

Ru) > =n=ln — )\

D one1 O3
which proves the minimization principle (38). Notice that equality can be achieved only if A\,a2 = A\;a? for
all n > 2 which is possible if and only if a,, = 0,n > 2 such that the Rayleigh quotient (37) is minimized
only when u = a1¢;.

R(u)

R(u) =



Q: The minimization principle can be generalized to higher rank eigenvalues. If we define the spaces of

functions

V={ueCa,b]), PFrula)+ Fou'(a)=0, PBzu(b)+ s (b)=0}
b
Ve ={u€ V7/ cup;de =0, i=1,2,...k}
prove that the following minimization property holds:

A = mi kE>1
k+1 521‘51 R(U), =

k

Q: Prove that if u € C?([a, b]) solves the minimization problem

1 b b
min _i/a uLuda:+/a uf dx

then u solves the nonhomogeneous problem
Lu=f

Q: Consider the Poisson problem in a domain 2 C R™ with boundary S

Au = f, xz€Q
v = 0, z€S8

What minimization problem does u solve? Give a physical interpretation.

(40)



