
Sturm-Liouville Eigenvalue Problems

Motivation

The heat flow in a nonuniform rod is modeled by the partial differential equation

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ Q (1)

where the thermal coefficients c, ρ, K0 are functions of x. If we further assume that the heat source Q is
proportional to the temperature u, Q = α(x)u, then (1) is written

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ αu (2)

Assuming that homogeneous boundary conditions are specified, the method of separation of variables may
be used to solve (2). If we consider

u(x, t) = Φ(x)G(t) (3)

then the variables may be separated

1
G

dG

dt
=

1
cρΦ

d

dx

(
K0

dΦ
dx

)
+

α

cρ
= −λ (4)

such that we obtain the differential equations

dG

dt
= −λG (5)

d

dx

(
K0

dΦ
dx

)
+ αΦ + λcρΦ = 0 (6)

This motivates the study of a general class of differential equations

d

dx

(
p
dΦ
dx

)
+ qΦ + λσΦ = 0 (7)

with appropriate boundary conditions. Equation (7) is known as a Sturm-Liouville differential equation.
Various types of linear homogeneous boundary conditions may be specified:

• First kind (Dirichlet): Φ = 0

• Second kind (Neumann): dΦ
dx = 0

• Third kind (Robin): dΦ
dx = ±hΦ

• Periodicity condition: Φ(−L) = Φ(L); dΦ
dx (−L) = dΦ

dx (L)

• Singularity condition: |Φ(0)| < ∞

A Sturm-Liouville eigenvalue problem consists of the Sturm-Liouville differential equation

d

dx

(
p
dΦ
dx

)
+ qΦ + λσΦ = 0, a < x < b (8)

subject to the boundary conditions of the type

β1Φ(a) + β2
dΦ
dx

(a) = 0 (9)

β3Φ(b) + β4
dΦ
dx

(b) = 0 (10)
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where β1, β2, β3, β4 are real constants. Notice that the periodicity condition is not of the form (9-10). The
Sturm-Liouville eigenvalue problem (8), (9-10) is called regular if the coefficients p, q, σ are real and contin-
uous in [a, b] and p(x) > 0, σ(x) > 0 for all x ∈ [a, b].

For any regular Sturm-Liouville problem, the following theorems are valid:

1. All the eigenvalue are real

2. There exists an infinite number of eigenvalues

λ1 < λ2 < . . . < λn < λn+1 < . . .

a. There is a smallest eigenvalue, λ1.

b. There is not a largest eigenvalue and λn →∞ as n →∞

3. Corresponding to each eigenvalue λn, there is an eigenfunction Φn(x) which is unique up to an arbitrary
multiplicative constant. In addition, Φn(x) has exactly n− 1 zeros in the interval (a, b).

4. Any piecewise smooth function f(x) can be represented by a generalized Fourier series of the eigen-
functions

f(x) ∼
∞∑

n=1

anΦn(x)

that converges to [f(x+) + f(x−)]/2 for a < x < b if the coefficients are an are properly selected.

5. Eigenfunctions corresponding to different eigenvalues are orthogonal relative to the weight function
σ(x) ∫ b

a

Φn(x)Φm(x)σ(x)dx = 0 if λn 6= λm (11)

6. Any eigenvalue can be related to its eigenfunction by the Rayleigh quotient

λ =
−pΦ dΦ

dx

∣∣b
a

+
∫ b

a

[
p

(
dΦ
dx

)2 − qΦ2
]
dx∫ b

a
Φ2σdx

(12)

Q: Prove the Rayleigh quotient relation (12).

Q: Prove the orthogonality property (11).

A simple example

Consider the Sturm-Liouville problem

d2Φ
dx2

+ λΦ = 0 (13)

Φ(0) = 0 (14)
Φ(L) = 0 (15)

This is a particular case of the Sturm-Liouville problem (8), (9-10) with the coefficients p(x) ≡ 1, q(x) ≡
0, σ(x) ≡ 1, β1 = 1, β2 = 0, β3 = 1, β4 = 0. We know that the real eigenvalues are

λn =
(nπ

L

)2

, n = 1, 2, . . .
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and the corresponding eigenfunctions are

Φn(x) = sin
nπx

L
, n = 1, 2, . . .

Q: Prove Theorem 1 (all eigenvalues are real) for problem (13-15).

Series of eigenfunctions

Theorem 4 shows that any piecewise smooth function may be represented by a generalized Fourier series of
the eigenfunctions

f(x) ∼
∞∑

n=1

anΦn(x) (16)

Q: Using the orthogonality of the eigenfunctions (Theorem 5) show that the generalized Fourier coefficients
are

am =

∫ b

a
f(x)Φm(x)σ(x)dx∫ b

a
Φ2

m(x)σ(x)dx

Q: For the example (13-15) show that Theorem 6 directly imply that all eigenvalues are positive (λ > 0).

Another example: heat flow in a nonuniform rod without sources

Consider the problem

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
(17)

u(0, t) = 0 (18)
∂u

∂x
(L, t) = = 0 (19)

u(x, 0) = f(x) (20)

where the thermal coefficients c, ρ, K0 are functions of x.
Using separation of variables

u(x, t) = Φ(x)G(t)

we obtain for the time dependent component the differential equation

dG

dt
= −λG ⇒ G(t) = ce−λt

and for the space dependent component the Sturm-Liouville eigenvalue problem

d

dx

(
K0

dΦ
dx

)
+ λcρΦ = 0 (21)

Φ(0) = 0 (22)
dΦ
dx

(L) = 0 (23)

For this problem we know that there is an infinite sequence of eigenvalues λn.

Q: Using the Rayleigh quotient, prove that all eigenvalues are positive.

If Φn is the eigenfunction corresponding to λn, then we obtain product solutions of the form

3



u(x, t) = Φn(x)ce−λnt

and using the principle of superposition we write the general solution as

u(x, t) =
∞∑

n=1

anΦn(x)e−λnt

To satisfy the initial condition (20) we must have

f(x) =
∞∑

n=1

anΦn(x)

and using the orthogonality of the eigenfunctions we obtain the generalized Fourier coefficients

an =

∫ L

0
f(x)Φn(x)c(x)ρ(x)dx∫ L

0
Φ2

n(x)c(x)ρ(x)dx

Self-adjoint operators

Consider the Sturm-Liouville operator

L(Φ) =
d

dx

(
p
dΦ
dx

)
+ qΦ (24)

as a linear operator defined on the space of functions Φ(x) that satisfy the homogeneous boundary conditions

β1Φ(a) + β2
dΦ
dx

(a) = 0 β3Φ(b) + β4
dΦ
dx

(b) = 0 (25)

The Sturm-Liouville eigenvalue problem is then written

L(Φ) + λσ(x)Φ = 0 (26)

and properties of the eigenvalues and eigenfunctions are obtained from the study of the operator (24).

Q: Show that for any smooth functions u(x) and v(x) the following properties hold:

• Lagrange’s identity (differential form)

uL(v)− vL(u) =
d

d x

[
p

(
u

d v

d x
− v

d u

d x

)]
(27)

• Green’s formula (integral form of Lagrange’s identity)∫ b

a

[uL(v)− vL(u)] dx = p

(
u

d v

d x
− v

d u

d x

)∣∣∣∣b
a

(28)

Definition: An operator L is called self-adjoint if for any functions u and v in the domain of definition∫ b

a

[uL(v)− vL(u)] dx = 0 (29)
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Q: Show that the operator (24) is self-adjoint on the space of functions that satisfy boundary conditions (25).

Orthogonal eigenfunctions: eigenfunctions corresponding to distinct eigenvalues are orthogonal

L(Φn) + λnσ(x)Φn = 0 | · Φm

∫ b

a

L(Φm) + λmσ(x)Φm = 0 | · Φn

∫ b

a

After subtracting the relations above and using the fact that L is self-adjoint, we get

(λm − λn)
∫ b

a

ΦnΦmσ(x) d x = 0 (30)

and since λm 6= λm, the eigenfunctions must be orthogonal∫ b

a

ΦnΦmσ(x) d x = 0 (31)

Real eigenvalues: the eigenvalues of a self-adjoint operator are real.

Proof by contradiction, assume that
L(Φ) = λσ(x)Φ

where λ is a complex number. Then the complex conjugate λ is also an eigenvalue with the corresponding
eigenfunction Φ

L(Φ) = λσ(x)Φ

Using the relation (30) for Φn = Φ,Φm = Φ we get

(λ− λ)
∫ b

a

ΦΦσ(x) d x = 0 (32)

Since ΦΦ = |Φ|2 and σ(x) > 0 the equation above implies λ = λ such that the eigenvalues are real.

Unique eigenfunctions: The eigenfunctions associated to an eigenvalue are unique, up to a multiplicative
constant (e.g., the eigenspace associated to each eigenvalue is of dimension one).

Proof: assume that Φ1 and Φ2 are eigenfunctions associated to the same eigenvalue λ:

L(Φ1) + λσ(x)Φ1 = 0 | · Φ2

L(Φ2) + λσ(x)Φ2 = 0 | · Φ1

After subtracting the relations above we get

Φ2L(Φ1)− Φ1L(Φ2) = 0 (33)

Q: Using Lagrange’s identity (27) show that (33) (25) imply

d

d x
(Φ2/Φ1) = 0

such that
Φ2 = cΦ1

and the eigenfunctions are linearly dependent.
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Section 5.6: Rayleigh quotient and the minimization principle

Consider the eigenvalue problem

Lφ(x) + λσ(x)φ(x) = 0, a < x < b (34)

where L is a Sturm-Liouville operator,

Lφ = [p(x)φ′(x)]′ + q(x)φ(x)

defined for functions that satisfy the boundary conditions

β1φ(a) + β2φ
′(a) = 0, β3φ(b) + β4φ

′(b) = 0 (35)

The Rayleigh quotient provides the eigenvalues in terms of the eigenfunctions, as

λ =
−

∫ b

a
φLφ dx∫ b

a
σφ2 dx

(36)

For an arbitrary function u ∈ C1([a, b]) that satisfies the boundary conditions (35) we define the Rayleigh
quotient as

R(u) =
−

∫ b

a
uLu dx∫ b

a
σu2 dx

(37)

Next we show that the lowest (first) eigenvalue satisfies the minimization principle

λ1 = min
u
R(u) (38)

Proof: Given a function u, we consider the series representation

u(x) =
∞∑

n=1

anφn(x)

We know that eigenfunctions corresponding to distinct eigenvalues are orthogonal and we may assume that
in addition φn are orthonormal∫ b

a

σφnφm dx = 0 if m 6= n,

∫ b

a

σφ2
n dx = 1 (39)

The Rayleigh quotient (37) is then written

R(u) =
−

∫ b

a
(
∑∞

n=1 anφn) (−
∑∞

n=1 anλnσφn) dx∫ b

a
(
∑∞

n=1 anσφn) (
∑∞

n=1 anφn) dx

and using the orthogonality of the eigenfunctions (39) we may simplify the relation above to

R(u) =
∑∞

n=1 λna2
n∑∞

n=1 a2
n

If the eigenvalues are ordered such that λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . then λna2
n ≥ λ1a

2
n such that from the

equation above we get

R(u) ≥ λ1

∑∞
n=1 a2

n∑∞
n=1 a2

n

= λ1

which proves the minimization principle (38). Notice that equality can be achieved only if λna2
n = λ1a

2
n for

all n ≥ 2 which is possible if and only if an = 0, n ≥ 2 such that the Rayleigh quotient (37) is minimized
only when u = a1φ1.
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Q: The minimization principle can be generalized to higher rank eigenvalues. If we define the spaces of
functions

V = {u ∈ C1([a, b]), β1u(a) + β2u
′(a) = 0, β3u(b) + β4u

′(b) = 0}

Vk = {u ∈ V,

∫ b

a

σuφi dx = 0, i = 1, 2, . . . k}

prove that the following minimization property holds:

λk+1 = min
u∈Vk

R(u), k ≥ 1 (40)

Q: Prove that if u ∈ C2([a, b]) solves the minimization problem

min
u∈V

[
−1

2

∫ b

a

uLu dx +
∫ b

a

uf dx

]

then u solves the nonhomogeneous problem
Lu = f

Q: Consider the Poisson problem in a domain Ω ⊂ Rn with boundary S

∆u = f, x ∈ Ω (41)
u = 0, x ∈ S (42)

What minimization problem does u solve? Give a physical interpretation.
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