
The Laplace equation on a solid cylinder

The next problem we’ll consider is the solution of Laplace’s equation ∇2u = 0 on
a solid cylinder. We’ll do this in cylindrical coordinates, which of course are the just
polar coordinates (r, θ) replacing (x, y) together with z. We’ll let our cylinder have
height H and radius a, so the z coordinate will go from 0 to H, and the r coordinate
will go from 0 to a.

The entire problem can be written
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for 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π and 0 ≤ z ≤ H together with boundary conditions

u(r, θ,H) = f(r, θ) on the top

u(r, θ, 0) = g(r, θ) on the bottom

u(a, θ, z) = h(θ, z) on the side

As we did for the Laplace equation on a rectangle, we’ll break this into three separate
problems, where we set two of the boundary conditions equal to zero in each problem,
and then add the three partial solutions together at the end.

As usual, we’ll start by separating the variables. We look for product solutions in
the form

u(r, θ, z) = R(r)Θ(θ)Z(z).

Putting this into the differential equation and dividing by RΘZ gives
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We can separate the Z part right off:
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′′

Z
= −λ

where λ is a constant because the left side is a function of r and θ alone and the right
side is a function of z alone (and we choose the minus sign on λ to agree with the
notation in the textbook), so

Z ′′ − λZ = 0.

Next, we multiply the part involving R and Θ by r2 to get

r2R′′ + rR′ + λr2

R
= −Θ′′

Θ
= µ

where µ is another constant.
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The Θ equation is thus

Θ′′ + µΘ = 0,

and since Θ must be periodic with period 2π, we must have µ = n2 for n = 0, 1, 2, . . .
and Θ is a linear combination of cosnθ and sinnθ.

Finally, the R equation is

r2R′′ + rR′ + (λr2 − n2)R = 0

which looks a little like Bessel’s equation, but there will be a twist. Now we’re ready
to do our three-part problem

Part I. Non-zero boundary values only on the top (i.e., g = 0 and h = 0)

Let u1(r, θ, z) be the solution of the sub-problem for which the functions on the
bottom and the side are zero, i.e., u1(r, θ, 0) = 0 and u1(a, θ, z) = 0, but u1(r, θ,H) =
f(r, θ), then we have the boundary conditions Z(0) = 0 and R(a) = 0. We’ll solve
for R first — no twist here, we have that

R(r) = Jn(
√
λ r)

and we need this to be zero when r = a. So
√
λa = znm and so
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(znm
a

)2
and R(r) = Jn

(znmr
a

)
.

Now that we know λ, we put it into the Z equation to get

Z ′′ −
(znm
a

)2
Z = 0.

This has exponential solutions, but its easier to write them as hyperbolic functions:
since Z(0) = 0 we have

Z = sinh
(znmz

a

)
and we have for the solution of the Part I problem:
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a

)
[anm cosnθ + bnm sinnθ].

To calculate the coefficients , note that we need

f(r, θ) = u1(r, θ,H) =
∞∑
n=0

∞∑
m=1
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)
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If we view θ as the variable and r as constant for the moment, this becomes an
ordinary Fourier series for f(r, θ), so we have
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f(r, θ) sinmθ dθ for n ≥ 1.

But the left sides of these are Fourier-Bessel series, so using the results of the notes
on the wave equation on the disk we finally obtain the coefficients:
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bnm =
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and the integral in the denominators is given by∫ a
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Jn+1(znm)2.

Part II. Non-zero boundary values only on the bottom (i.e., f = 0 and
h = 0)

Let u2(r, θ, z) be the solution of the sub-problem for which the functions on the top
and the side are zero, i.e., u2(r, θ,H) = 0 and u2(a, θ, z) = 0, but u2(r, θ, 0) = g(r, θ),
then we have the boundary conditions Z(H) = 0 and R(a) = 0. Once again, we’ll
solve for R first — and get the same answer. We have that

R(r) = Jn(
√
λ r)
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and we need this to be zero when r = a. So
√
λa = znm and so

λ =
(znm
a

)2
and R(r) = Jn

(znmr
a

)
.

As in part I, now that we know λ, we put it into the Z equation to get

Z ′′ −
(znm
a

)2
Z = 0.

This has exponential solutions, and its again easier to write them as hyperbolic func-
tions: since Z(H) = 0 we have

Z = sinh

(
znm(H − z)

a

)
and we have for the solution of the Part II problem:

u2(r, θ, z) =
∞∑
n=0

∞∑
m=1

Jn

(znmr
a

)
sinh

(
znm(H − z)

a

)
[cnm cosnθ + dnm sinnθ].

To calculate the coefficients , note that we need

g(r, θ) = u2(r, θ, 0) =
∞∑
n=0

∞∑
m=1

Jn

(znmr
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a

)
[cnm cosnθ + dnm sinnθ]

This is the same series as in Part I, so we proceed the same way. If we view θ as the
variable and r as constant for the moment, this becomes an ordinary Fourier series
for g(r, θ), so we have
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The left sides of these are Fourier-Bessel series, so using the results of the notes on
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the wave equation on the disk we finally obtain the coefficients:

c0m =

1

2π

∫ π

−π

∫ a

0

rg(r, θ)J0

(z0mr
a

)
dr dθ

sinh

(
z0mH

a

)∫ a

0

rJ0

(z0mr
a

)2
dr

for n = 0,m ≥ 1

cnm =

1

π

∫ π

−π

∫ a

0

rg(r, θ)Jn

(znmr
a

)
cosnθ dr dθ

sinh

(
znmH

a

)∫ a

0

rJn

(znmr
a

)2
dr

for n ≥ 1,m ≥ 1

dnm =

1

π

∫ π

−π

∫ a

0

rg(r, θ)Jn

(znmr
a

)
sinnθ dr dθ

sinh

(
znmH

a

)∫ a

0

rJn

(znmr
a

)2
dr

for n ≥ 1,m ≥ 1
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Part III. Non-zero boundary values only on the side (i.e., f = 0 and g = 0)

Now we come to the new wrinkle. Let u3(r, θ, z) be the solution of the sub-problem
for which the functions on the top and the bottom are zero, i.e., u3(r, θ,H) = 0 and
u3(r, θ,H) = 0, but u3(a, θ, z) = h(θ, z), then we have the boundary conditions
Z(0) = 0 and Z(H) = 0.

Since the boundary conditions only involve Z, this time we’ll solve for Z first. The
Z equation started out as

Z ′′ − λZ = 0

and the boundary conditions on Z imply that

Z = sin
(mπz
H

)
and λ = −

(mπ
H

)2
for m = 1, 2, 3, . . .. These values of λ make the R equation, which was

r2R′′ + rR′ + (λr2 − n2)R = 0

into

r2R′′ + rR′ +

(
−m

2π2

H2
r2 − n2

)
R = 0

This looks like Bessel’s equation, except the sign is wrong on the r2R term. But when
we had the R equation with

√
λ in it when we were studying the wave equation on
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the disk, we learned that if we set x =
√
λ r, then we obtained Bessel’s equation for

R(x). So, undaunted by the fact that λ is negative in this case, we set

x =
√
λr =

√
−
(mπ
H

)2
r = i

mπ

H
r

and the R equation becomes

x2
d2R

dx2
+ x

dR

dx
+ (x2 − n2)R = 0

for which the only solutions bounded at r = x = 0 are constant multiples of

Jn(x) = Jn

(
i
mπ

H
r
)
.

Now, having a complex answer might not seem to useful, but by way of digging a
little deeper here, we recall the series for Jn(x):

Jn(x) =
∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)n+2k

.

If we ignore the mπ/H part and just substitute ir for x, we get

Jn(ir) =
∞∑
k=0
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2
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=
∞∑
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∞∑
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∞∑
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∞∑
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1
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So we have that

In(r) =
1

in
Jn(ir) =

∞∑
k=0

1

k!(k + n)!

(r
2

)n+2k

is a real function, called the modified Bessel function of the first kind of order n. Since
the power series of In(r) has only positive coefficients, we have that In is a positive,
increasing, concave-up function (rather like the exponential function or cosh(x) for
positive values of r). Indeed, the relationship between Jn and In is analogous to the
relationship between the trigonometric functions and the hyperbolic functions.
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You can check, either by plugging the series for In into the differential equation,
or else by going through the whole Frobenius power series method starting from the
differential equation, that In indeed satisfies the differential equation. So we conclude
that

R(r) = In

(mπ
H

r
)
.

So we conclude that the solution of the Part III problem is

u3(r, θ, z) =
∞∑
n=0

∞∑
m=1

In

(mπr
H

)
sin
(mπz
H

)
[enm cosnθ + fnm sinnθ].

After all the complication with In, it might seem surprising that the coefficients are
relatively easy to specify, since, setting r = a to get the last boundary condition gives

u3(a, θ, z) =
∞∑
n=0

∞∑
m=1

In

(mπa
H

)
sin
(mπz
H

)
[enm cosnθ + fnm sinnθ],

and this is an ordinary (double) Fourier series — a sine series in z and a full Fourier
series in θ. So the coefficients are
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Putting it all together

Now we have all three pieces of the solution, so we bring them all together to
conclude:

The solution of the problem
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for 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π and 0 ≤ z ≤ H together with boundary conditions

u(r, θ,H) = f(r, θ) on the top

u(r, θ, 0) = g(r, θ) on the bottom

u(a, θ, z) = h(θ, z) on the side
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is

u(r, θ, z) = u1(r, θ, z) + u2(r, θ, z) + u3(r, θ, z),

where (with znm being the mth positive zero of the Bessel function Jn(x))
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∞∑
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∞∑
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)
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The coefficients anm, bnm, cnm, dnm, enm and fnm are given by
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c0m =
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That’s it!


