The Laplace equation on a solid cylinder

The next problem we’ll consider is the solution of Laplace’s equation V2u = 0 on
a solid cylinder. We’ll do this in cylindrical coordinates, which of course are the just
polar coordinates (r,#) replacing (z,y) together with z. We'll let our cylinder have
height H and radius a, so the z coordinate will go from 0 to H, and the r coordinate
will go from 0 to a.

The entire problem can be written
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for 0 <r<a,0<60<2rand 0 <z < H together with boundary conditions

u(r,0,H) = f(r,0) on the top
u(r,0,0) = g(r,0) on the bottom
u(a,d,z) = h(0,z) on the side

As we did for the Laplace equation on a rectangle, we’ll break this into three separate
problems, where we set two of the boundary conditions equal to zero in each problem,
and then add the three partial solutions together at the end.

As usual, we’ll start by separating the variables. We look for product solutions in
the form

u(r,0,z) = R(r)0(0)Z(z).
Putting this into the differential equation and dividing by ROZ gives

(TR/)/ (_)// Z//
+ +— =0
rR r’e 7
We can separate the Z part right off:
(TR,)/ @// Z//
rR 26 7
where A is a constant because the left side is a function of r and # alone and the right
side is a function of z alone (and we choose the minus sign on A to agree with the
notation in the textbook), so

—-A

Z" — N7 =0.
Next, we multiply the part involving R and © by r? to get
T2RH + TR/ + )\T2 _@// _

R ~ T

where g is another constant.
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The © equation is thus
Q" + 10 =0,

and since © must be periodic with period 27, we must have y = n? forn =0,1,2,...
and O is a linear combination of cosn# and sin nf.

Finally, the R equation is
PR +rR + (M?*—n*)R=0

which looks a little like Bessel’s equation, but there will be a twist. Now we're ready
to do our three-part problem

Part I. Non-zero boundary values only on the top (i.e., ¢ =0 and h = 0)

Let uy(r,0, z) be the solution of the sub-problem for which the functions on the
bottom and the side are zero, i.e., uq(r,0,0) = 0 and u;(a, 0, z) = 0, but uy(r, 0, H) =
f(r,0), then we have the boundary conditions Z(0) = 0 and R(a) = 0. We’ll solve
for R first — no twist here, we have that

R(r) = Jn(\/x T)

and we need this to be zero when 7 = a. So v/ Aa = z,,, and so

A= (Z”—m)2 and R(r) = J, (Z”mr) .

a a
Now that we know A, we put it into the Z equation to get
Z" (Z"—’”)Q Z =0
, )
This has exponential solutions, but its easier to write them as hyperbolic functions:

since Z(0) = 0 we have
Z = sinh (anz)

a

and we have for the solution of the Part I problem:

uy(r,0,2) = Z Z J (Z”mr> sinh <Z"mz> (@ cOS MO + by, sin nb)].

a a

n=0 m=1

To calculate the coefficients , note that we need

oo oo H
f(r,0) =u(r,0,H) = Z Z J, <Z"(;nr> sinh (Z"Z ) (@ cOS MO + by, sin N0
n=0 m=1
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If we view 6 as the variable and r as constant for the moment, this becomes an
ordinary Fourier series for f(r, ), so we have

oo H 1 s
> domo (ZO;”T) sinh (Zo’; ) - %/ f(r,0)d0 forn =0,

m=1
ZanmJn (Z T) sinh (Z ) :—/ f(r,0)cosmfdf forn>1,
— a a T ) .

(0.) H 1 s

Z brim I <anr> sinh <Z"m > = —/ f(r,0)sinm@df forn > 1.
— a a 7).

But the left sides of these are Fourier-Bessel series, so using the results of the notes
on the wave equation on the disk we finally obtain the coefficients:

1 [ [ ZomT
%/—w/o rf(r,@)J()( " )drd@

Ao, = m 5 form=0,m>1
sinh (ZomH> / rJo <Z0m7“> dr
a 0 a
1 s a
—/ / rf(r,0)J, (Z”mr) cosnf dr df
anm:W—woz 7 . ¢ — form>1,m>1
sinh< o )/ rJn< o > dr
a 0 a
1 T “ nm .
—/ / rf(r,0)J, (Q) sinn@ dr df
T J_Jo a

bnm =
a 2
sinh (anH)/ rd, (anr> dr
a 0 a

and the integral in the denominators is given by

fornm>1,m>1

2

/Oa rd, (Z”—mr>2 dr = %Jnﬂ(znm)Q.

a

Part II. Non-zero boundary values only on the bottom (i.e., f = 0 and
h =0)

Let us(r, 8, z) be the solution of the sub-problem for which the functions on the top
and the side are zero, i.e., us(r,6, H) = 0 and us(a, 0, z) = 0, but uy(r,0,0) = g(r,0),
then we have the boundary conditions Z(H) = 0 and R(a) = 0. Once again, we’ll
solve for R first — and get the same answer. We have that

R(r) = Jn(\/x T)



4 LAPLACE EQUATION ON THE CYLINDER

and we need this to be zero when r = a. So vV a = z,,, and so

Znm 2 ZnmT
A= <—> and R(r)=J, < ) .
a a
As in part I, now that we know A, we put it into the Z equation to get

z" — (Z”—m)ZZ ~0.
a

This has exponential solutions, and its again easier to write them as hyperbolic func-
tions: since Z(H) = 0 we have

Z = sinh <—Z"7”(H - Z)>

a

and we have for the solution of the Part II problem:

uy(r, 0, 2) = i i In <anT> sinh <M> [Crm cos Nl + dyy, sin nd)].

a a
n=0 m=1

To calculate the coefficients , note that we need

oo oo H
g(r,0) = uy(r,0,0) = Z Z g, <Z"mr> sinh (an ) [Cm cOs 10 + dy, sin 1)

a
n=0 m=1

This is the same series as in Part I, so we proceed the same way. If we view # as the
variable and r as constant for the moment, this becomes an ordinary Fourier series
for g(r,0), so we have

o H 1 s
E comJo (z()mr) sinh (Zom ) = —/ g(r,0)do forn =0,
a a 2m

m=1 -n

chmJn (z T) sinh <Z ) = —/ g(r,0)cosmfdf for n > 1,
— a a T ) .

o0 H 1 s

Z 7 (Z"mr> sinh <Z”m ) = —/ g(r,0)sinmfdf forn > 1.
— a a 7).

The left sides of these are Fourier-Bessel series, so using the results of the notes on
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the wave equation on the disk we finally obtain the coefficients:

1 [ [ ZomT
%/—w/o rg(r,Q)J()( " ) dr df
om = ZomH “ 2omT\ 2
sinh( Om )/ T’J()( Om ) dr
a 0 a
1 s a
—/ / rg(r,0)J, (anr) cosnf dr df
o T )ado a
e 'erH “ nm 2
sinh (Z )/ rd, (z T) dr
a 0 a

1 s a
—/ / rg(r,0)J, <Z"mr> sinnf dr df
T J_rJo

Ay, = a forn>1m>1

a 2
sinh <anH) / rd, (anr> dr
a 0 a

and the integral in the denominators is again given by

form=0,m>1

form>1m>1

2

/Oa rd, (Z”—mr>2 dr = %Jnﬂ(znm)Q.

a

Part III. Non-zero boundary values only on the side (i.e., f =0 and g = 0)

Now we come to the new wrinkle. Let uz(r, , z) be the solution of the sub-problem
for which the functions on the top and the bottom are zero, i.e., us(r,0, H) = 0 and
ug(r,0, H) = 0, but us(a,0,z) = h(f,z), then we have the boundary conditions
Z(0)=0and Z(H) =0.

Since the boundary conditions only involve Z, this time we’ll solve for Z first. The
Z equation started out as

Z"— N2 =0
and the boundary conditions on Z imply that

Z = sin (%) and A= — (%)2

for m =1,2,3,.... These values of A make the R equation, which was
rP?R'+rR + (M*—n*)R=0

into

9 2
rR”+rR’+(— 2 —n)R—O

This looks like Bessel’s equation, except the sign is wrong on the r?R term. But when
we had the R equation with v/X in it when we were studying the wave equation on
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the disk, we learned that if we set z = v/Ar, then we obtained Bessel’s equation for
R(z). So, undaunted by the fact that A is negative in this case, we set

2
x:\/XT: —<%) r:i%r

and the R equation becomes

o d? d
d—§+xd—R+(x2—n2)R:O
for which the only solutions bounded at » = x = 0 are constant multiples of
In(z) = J, (z% r) :

Now, having a complex answer might not seem to useful, but by way of digging a
little deeper here, we recall the series for Jn(x):

;k' k;—i—n ( >n+2k'

If we ignore the mm/H part and just substitute ir for z, we get

Julir) = ; kl((k: i);) (W)Wk
St (5)
=i Zk'((ki]; (5
=S g (5)
-y k'(lirn)! @Mk

So we have that
1 - 1 P\ 2k
[ = — ) e B ———— —
n(r) = g Jnlir) kz:% Kk +n) (2)

is a real function, called the modified Bessel function of the first kind of order n. Since
the power series of I,,(r) has only positive coefficients, we have that I, is a positive,
increasing, concave-up function (rather like the exponential function or cosh(x) for
positive values of ). Indeed, the relationship between J,, and I,, is analogous to the
relationship between the trigonometric functions and the hyperbolic functions.
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You can check, either by plugging the series for [,, into the differential equation,
or else by going through the whole Frobenius power series method starting from the
differential equation, that I,, indeed satisfies the differential equation. So we conclude

that o
mmzh(ﬁw)

So we conclude that the solution of the Part III problem is

(r,0,z) ZZ[ <m7r7"> sin (mj;rz> [€nm cosnb + frm sinnd)].

n=0 m=1

After all the complication with I,,, it might seem surprising that the coefficients are
relatively easy to specify, since, setting » = a to get the last boundary condition gives

(a,0,z) ZZI (mwa) i (%) [€nm cosnl + frm sinnd),

and this is an ordinary (double) Fourier series — a sine series in z and a full Fourier
series in #. So the coefficients are

€om = // stm )dzd@ forn=0,m>1
wﬂh< - H
2
Cnm = m7m h(8, z) Sln H )Cosné’dde forn>1m>1
WHQ( -
H
2
fom = // stm )Sinnedzdé form>1m>1
WH%(Tga =)o H

Putting it all together

Now we have all three pieces of the solution, so we bring them all together to
conclude:

The solution of the problem

1 8 7’@ + i@ + @ — 0
ror \' or r2002 022
for 0 <r<a,0<60<27rand 0 <z < H together with boundary conditions

u(r,0,H) = f(r,0) on the top
u(r,0,0) = g(r,0) on the bottom
u(a,0,z) = h(h,z) on the side
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U(T7 07 Z) = ul(Tv 07 Z) + UQ(’I", 07 Z) + Ug(’f‘, 07 Z)a

where (with z,,, being the mth positive zero of the Bessel function J,,(z))

uy(r,0,2) = i i J, (Z”Zr> sinh (zn§z> (@ cOs N + by, sin né)],
n=0 m=1

(r,0,2) i i In <anr> inh (@) [Crm cos Nl + dyy, sin nb)],

n=0 m=1

and

mmnz

(r,0,z) ZZI <m7r7"> sin( i ) [€nm cosnb + frm sin nd)].

n=0 m=1

The coefficients anm, bnm, Cam, um, €nm and fu,, are given by

rf(r,0)Jy (’Z(’mr) dr do
= =m0 a form=0,m>1

Qg
H
ma?Jy(zom)?sinh <z0m )
a
/ / rf(r,8)J, )cosn@drdQ
ay, —7 forn>0.m>1
an B ’ o
a2 Jp 1 (Znm)?sinh (Z ” )
/ / (r,0)J, an >Sinn6’dr do
>
brm -1 forn>0m>1
7a? Jyi1(Znm )?sinh
a
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/ / rg(r,0)Jo (z()mr) dr df
= J=m0 ¢ forn=0,m>1

Co
md
ma?Jy(Zom)?sinh (Zoa )
/ / (r,0)J, an )Cosnﬁdrdﬁ
form>1,m>1
nm H - bl -
7a?Jp i 1(Zpm)?sinh (an >
a
/ / rg(r,0)J, )smn@drdﬁ
> >
dnm = - forn>1m>1
a2 Jp11(Zpm ) ?sinh ”
/ / h(0, 2) SlIl > dz df
Com = —= T forn=0,m>1
rHI, ( . )
T rH . o/mrz
2/ / h(@,z)sm( Vi )cosn9d2d9
Cpm = —— 10 a forn>1,m>1
th( )
H
T H
2/ / h(0, z) sin mwz) sinnf dz do
fom =~ forn>1,m > 1.
1. (7

That’s it!



