GROUP THEORY PRACTICE PROBLEMS 1

QINGYUN ZENG

CONTENTS

1.	Basic definition	1
2.	Subgroups	1
3.	Homomorphisms	2
Ret	References	

1. BASIC DEFINITION

Problem 1.1. Prove that if G is an abelian group, then for all $a, b \in G$ and all integers n, $(a \cdot b)^n = a^n \cdot b^n$.

Problem 1.2. If G is a group such that $(a \cdot b)^2 = a^2 \cdot b^2$ for all $a, b \in G$, show that G must be abelian.

Problem 1.3. If G is a finite group, show that there exists a positive integer N such that $a^N = e$ for all $a \in G$.

Problem 1.4. (1) If the group G has three elements, show it must be abelian.

- (2) Do part (1) if G has four elements.
- (3) Do part (2) if G has four elements

Problem 1.5. Show that if every element of the group G is its own inverse, then G is abelian.

Problem 1.6. If G is a group of even order, prove it has an element $a \neq e$ satisfying $a^2 = e$.

Problem 1.7. For any n > 2 construct a non-abelian group of order 2n. (Hint: imitate the relations in $S_{3.}$)

2. Subgroups

Problem 2.1. If G has no nontrivial subgroups, show that G must be finite of prime order.

- **Problem 2.2.** (1) If H is a subgroup of G, and $a \in G$. Let $aHa^{-1} = \{aha^{-1}|h \in H\}$. Show that aHa^{-1} is a subgroup of G.
 - (2) If H is finite, what is the order of aHa^{-1} ?

Problem 2.3. Write out all the right cosets of H in G where

(1) G = (a) is a cyclic group of order 10 and $H = (a^2)$ is the subgroup of G generated by a^2 .

QINGYUN ZENG

(2) G as in part (1), $H = (a^5)$ is the subgroup of G generated by a^5 .

Problem 2.4. If $a \in G$, define $N(a) = \{x \in G | xa = ax\}$. Show that N(a) is a subgroup of G. N(a) is usually called the normalizer or centralizer of a in G.

Problem 2.5. If H is a subgroup of G, then by the **centralizer** C(H) of H we mean the set $\{x \in G | xh = hx \ \forall h \in H\}$. Prove that C(H) is a subgroup of G.

Problem 2.6. The center Z(G) of a group G is defined by $Z(G) = \{z \in G | zx = xz \ \forall x \in G\}$. Prove that Z(G) is a subgroup of G. Can you recognize Z as C(T) for some subgroup T of G?

Problem 2.7. If H is a subgroup of G, let $N(H) = \{a \in G | aHa^{-1} = H\}$. Prove that

- (1) N(H) is a subgroup of G.
- (2) $H \subset N(H)$.

We call N(H) the normalizer of H in G.

Problem 2.8. If $a \in G$ and $a^m = e_G$, prove that the order of a divides m.

3. Homomorphisms

Problem 3.1. Let G be a finite abelian group of order ord(G) and suppose the integer n is relatively prime to ord(G). Prove that every $g \in G$ can be written as $g = x^n$ with $x \in G$. (HINT: Consider the mapping $\phi : G \to G$ defined by $\phi(y) = y^n$, and prove this mapping is an isomorphism of G onto G.

Problem 3.2. Let G be the dihedral group defined as $\{x, y | x^2 = e, y^n = e, xy = y^{-1}x\}$. Prove

- (1) The subgroup $N = \{e, y, y^2, \dots, y^{n-1}\}$ is normal in G.
- (2) That $G/N \simeq W$, where $W = \{1, -1\}$ is the group under the multiplication of the real numbers.

Problem 3.3. Prove that a group of order 9 is abelian.

Problem 3.4. If G is a non-abelian group of order 6, prove that $G \simeq S_3$.

Problem 3.5. If G is abelian and if N is any subgroup of G, prove that G/N is abelian

Problem 3.6. Let G be the group of all nonzero complex numbers under multiplication and let \overline{G} be the group of all real 2×2 matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, where not both a and b are 0, under matrix multiplication. Show that G and \overline{G} are isomorphic by exhibiting an isomorphism of G onto \overline{G} .

References

1. Artin, Michael. Algebra. 2nd ed. Boston: Pearson Prentice Hall, 2011.

2. Armstrong, M. A. Groups and Symmetry. New York: Springer-Verlag, 1988.

3. Aluffi, Paolo. Algebra : Chapter 0. Providence, R.I.: American Mathematical Society, 2009.

Current address: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104

E-mail address: qzeQmath.upenn.edu

 $\mathbf{2}$