
MATH 662 Matrix Analysis Notes from Hoffman and Kunze 2/e, Chapter 2

Instructions Read the appropriate section in the text first. Then read through the notes
and attempt the suggested exercises. The assigned homework is due according to the schedule
on the course webpage (www.math.wcu.edu/∼jlawson/teaching/math662/.

§2.1 Vector spaces Review the four properties of a vector space.

1. We have a field F of scalars.

2. We have a set V of objects called vectors. Typically V must not be the empty set ∅.

3. The set V has a commutative and associative binary operator +, an additive identity
and an additive inverse (and thus we get subtraction for free). In abstract algebra, we
say that V is an abelian group under +.

4. Scalar multiplication is a a new algebraic structure that describes the rules of
engagement for F and V . For all c1, c2 ∈ F and α1, α2 ∈ V :

(a) The identity 1 ∈ F serves as the scalar multiplicative identity: 1 α = α.

(b) “Associativity:” c1(c2α) = (c1c2)α). (Thus c1c2α) is disambiguous.)

(c) Scalar multiplication distributes over addition in V : c1(α1 + α2) = c1α1 + c1α2.

(d) Scalar multiplication distributes over addition in F: (c1 + c2)α1 = c1α1 + c2α1.

Exercise Read Examples 1–5 and verify that they are vector spaces.

When at risk of confusion, state the field you are using.

Exercise Describe the elements of the set{
c1

[
1
0

]
+ c2

[
1
π

]
c1, c2 ∈ F

}
for F = R and for F = Q. Compare the two sets.

Read the Lemma following the examples and the proof: If c ∈ F, α ∈ V , and cα = 0 then
c = 0 or α = 0. Observe that there are two meanings for “0:” If c = 0 then we mean
0 ∈ f to be a scalar, but if α = 0 then we intend 0 ∈ V to be the zero vector. Gone
is the vector notation from our days of multivariable calculus (like putting an arrow over a
vector or writing it in boldface or underline). Perhaps as a bit of mathematical snobbery
(or laziness), we distinguish scalars from vectors mostly by context.



Definition Given a finite collection of vectors {αi}n
i=1 ⊂ V the set of linear combina-

tions of that collection is {
n∑

i=1

Ciαi ci ∈ F

}
.

Exercise Can

[
0
e

]
be written as a linear combination of the set

{[
0
e

]
,

[
0
e

]}
if F = R?

If F = Q?

Read about the geometry of n-tuples represented as vectors in Fn. Vectors in the cartesian
plane R2 are identified with points P (x, y) by constructing the head-to-tail vector ~OP where
0 is the origin. (Thus the zero vector 0 ∈ R2 is identified with the origin as a point (0, 0).
This gives us the familiar picture from vector calculus.

HW 2.1.3, 2.1.4, 2.1.7

§2.2 Subspaces For subsets we may write W ⊂ V or W ⊆ V . The former usually
indicates a proper subset.

Definition Let V be a vector space over field F. A subset W ⊂ V is a subspace if W is
also a vector space over F using the addition and scalar multiplication inherited from V .

Some folks use the notation W < V or W ≤ V to indicate that W is also a subspace (the
former a proper subspace) of V . Observe that {0} < V and of course V ≤ V .

Read the Theorem about necessary and sufficient conditions for W ⊂ V to be a subspace,
and the proof. Observe that all properties of a vector space are inherited from V . To
verify that W is a subspace we need only to check that W is closed under addition and
scalar multiplication. The theorem provides an efficient one-step test for closure. Review
the examples of subspaces in the text.

Exercise Show that the set of antisymmetric matrices (Aij = −Aji) over F do not form a
subspace of Fn×n

Review the properties of matrix multiplication. Observe that scalars “pop out” in scalar
multiplication: A(dB + C) = d(AB) + AC. The text has a formal proof using indices.

Study Theorem 2 and its proof. Observe that this applies to an arbitrary collection, not just
a finite collection.

Exercise Find two subspaces W1 and W2 of R2 so that W1 ∪W2 is not a subspace.

Definition Let S = {αi}n
i=1, where αi ∈ V . Let {Wa}a∈A be the set of all subspaces Wa

of V such that S ⊂ Wa. (The set A is the indexing set.) Then the subspace spanned by
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the vectors in S is defined to be

span S :=
⋂
a∈A

Wa .

Theorem 3

span S =

{
n∑

i=1

ciαi ci ∈ F

}

Read the proof. We require S to be nonempty.

HW 2.2.1, 2.2.3

Definition Let S = {αi}n
i=1, where αi ∈ V . Let {Wa}a∈A be the set of all subspaces Wa

of V such that S ⊂ Wa. (The set A is the indexing set.) Then the subspace spanned by
the vectors in S is defined to be

span S :=
⋂
a∈A

Wa .

Read the definition of a (finite) sum of subsets of V . If all of the subsets are also subspaces
then the sum is a subspace. (Why?) Read the examples, especially the example involving
the rowspace of a matrix.

Exercise Convince yourself that span ∅ = {0}, the zero vector in V .

Lemma 1 Let {Wi}n
i=1 be a finite collection of subspaces of V . Then

n⋃
i=1

Wi ⊂
n∑

i=1

Wi

Exercise Prove.

HW 2.2.5, 2.2.6a

Continue with §2.3 now.
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