MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT

QINGYUN ZENG

1. The Seifert-van Kampen theorem

1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition.

Definition 1.1 (Neighbourhood deformation retract). A subset $A \subseteq X$ is a neighbourhood deformation retract if there is an open set $A \subset U \subset X$ such that A is a strong deformation retract of U, i.e. there exists a retraction $r: U \rightarrow A$ and $r \simeq \operatorname{Id}_{U} r e l A$.

This is something that is true most of the time, in sufficiently sane spaces.
Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract.

Theorem 1.3. Let X be a space, $A, B \subseteq X$ closed subspaces. Suppose that A, B and $A \cap B$ are path connected, and $A \cap B$ is a neighbourhood deformation retract of A and B. Then for any $x_{0} \in A \cap B$.

$$
\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(A, x_{0}\right) \underset{\pi_{1}\left(A \cap B, x_{0}\right)}{*} \pi_{1}\left(B, x_{0}\right) .
$$

This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to "fatten up" our A and B to make them open.

If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid $\Pi_{1}(X)$ is a cosheaf on X. Here $\Pi_{1}(X)$ is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of $\pi_{1}(X)$.
1.2. A generalization of the Seifert-van Kampen theorem. Here's a generalization of the Seifert-van Kampen theorem by Jacob Lurie, which describes the entire weak homotopy type of X in terms of any stoficiently nice covering of X by open sets.

Theorem 1.4. Let X be a topological space, let $U(X)$ denote the collection of all open subsets of X (partially ordered by inclusion). Let C be a small category and let $\chi: \mathrm{C} \rightarrow U(X)$ be a functor. For every $x \in X$, let C_{x} denote the full subcategory of C spanned by those objects $C \in \mathrm{C}$ such that $x \in \chi(C)$. Assume that χ satisfies the following condition:
(1) For every point x, the simplicial set $N\left(\mathrm{C}_{x}\right)$ is weakly contractible.

Then the canonical map $\lim _{C \in \mathrm{C}} \operatorname{Sing}(\chi(C)) \rightarrow \operatorname{Sing}(X)$ exhibits the simplicial set $\operatorname{Sing}(X)$ as a homotopy colimit of the diagram $\{\operatorname{Sing}(\chi(C))\}_{C \in \mathrm{C}}$.

Proof. See Higher algebra A.3.1.

2. Problem 4

Let $G=\left(a, b: a^{4}=1, b^{2}=1, b a b^{-1}=a^{-1}\right)$. Since $b a b^{-1}=a^{-1}, b a=a^{-1} b$. From this,

$$
\begin{equation*}
b a^{2}=(b a) a=\left(a^{-1} b\right) a=a^{-1}(b a)=a^{-2} b . \tag{2.1}
\end{equation*}
$$

Similarly we can get $b a^{3}=a^{-3} b$. Note that $a^{-n} b=a^{4-n} b$ for $1 \leq n \leq 3$. Hence we see that $G=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}$ since all other elements can be reduced by our observation. Now we show that G is isomorphic to D_{4}. Let $\phi: G \rightarrow D_{4}$ be a homomorphism defined by $\phi(a)=a^{\prime}$, $\phi(b)=b^{\prime}$, where a^{\prime} is a generator of rotation and b^{\prime} is a generator of reflexion on D_{4}. Note that $D_{4}=\left\{e, a^{\prime}, a^{\prime 2}, a^{\prime 3}, b^{\prime}, a^{\prime} b, a^{\prime 2} b, a^{\prime 3} b\right\}$ and satisfies the relation $b a^{n}=a^{-n} b$. It's easy to see that ϕ is surjective. Since $|G|=\left|D^{4}\right|, \phi$ is injective, hence an isomorphism.

3. Problem 6

Let $m=x y x$ and $n=x y$. We claim that $\{m, n\}$ generates H as well. In fact $m^{-1} n^{2}=y$ and $n y^{-1}=x$ and the result follows. Define a homomorphism $\phi: G \rightarrow H$ by letting $\phi(a)=m$ and $\phi(b)=n$. Since m and n generate H, ϕ is onto. Now let $\phi(z)=e$. Note that $e \in H$ is generated by $x y x y^{-1} x^{-1} y^{-1}$, we can write it as

$$
\begin{equation*}
(x y x)\left(y^{-1} x^{-1}\right) y^{-1}=m n^{-1}\left(n^{-2} m\right)=m n^{-3} m \tag{3.1}
\end{equation*}
$$

since

$$
\begin{equation*}
y^{-1}=\left(m^{-1} n^{2}\right)^{-1}=n^{-2} m . \tag{3.2}
\end{equation*}
$$

Hence $\operatorname{ker}(\phi)$ is generated by $a b^{-3} a$. In fact,

$$
\begin{equation*}
a b^{-3}=a b^{-3} e=a b^{-3}\left(b^{3} a^{-2}\right)=a^{-1}, \tag{3.3}
\end{equation*}
$$

so $a b^{-3} a=e$. Therefore, the $\operatorname{ker}(\phi)$ is trivial and hence ϕ is an isomorphism.

4. Problem 14

Consider n-sphere $S^{n}=\left\{\mathbf{v} \in \mathbb{R}^{n+1}:|\mathbf{v}|=1\right\}$ for $n \geq 2$. We want to find $\pi_{1}\left(S^{n}\right)$.
The idea is to write S^{n} as a union of two open sets. We let $n=\mathbf{e}_{1} \in S^{n} \subseteq \mathbb{R}^{n+1}$ be the North pole, and $s=-\mathbf{e}_{1}$ be the South pole. We let $A=S^{n} \backslash\{n\}$, and $B=S^{n} \backslash\{s\}$. By stereographic projection, we know that $A, B \cong \mathbb{R}^{n}$. The hard part is to understand the intersection.

To do so, we can draw a cylinder $S^{n-1} \times(-1,1)$, and project our $A \cap B$ onto the cylinder. We can similarly project the cylinder onto $A \cap B$. So $A \cap B \cong S^{n-1} \times(-1,1) \simeq S^{n-1}$, since $(-1,1)$ is contractible.

We can now apply the Seifert-van Kampen theorem. Note that this works only if S^{n-1} is pathconnected, i.e. $n \geq 2$. Then this tells us that

$$
\pi_{1}\left(S^{n}\right) \cong \pi_{1}\left(\mathbb{R}^{n}\right) \underset{\pi_{1}\left(S^{n-1}\right)}{*} \pi_{1}\left(\mathbb{R}^{n}\right) \cong 1 \underset{\pi_{1}\left(S^{n-1}\right)}{*} 1
$$

It is easy to see this is the trivial group. We can see this directly form the universal property of the amalgamated free product, or note that it is the quotient of $1 * 1$, which is 1 .

So for $n \geq 2, \pi_{1}\left(S^{n}\right) \cong 1$.

5. Problem 15

Suppose we take the wedge sum of two circles $S^{1} \wedge S^{1}$. We would like to pick A, B to be each of the circles, but we cannot, since A and B have to be open. Notice that both A and B retract to the circle. So $\pi_{1}(A) \cong \pi_{1}(B) \cong \mathbb{Z}$, while $A \cap B$ is a cross, which retracts to a point. So $\pi_{1}(A \cap B)=1$.

Hence by the Seifert-van Kampen theorem, we get

$$
\pi_{1}\left(S^{1} \wedge S^{1}, x_{0}\right)=\pi_{1}\left(A, x_{0}\right) \underset{\pi_{1}\left(A \cap B, x_{0}\right)}{*} \pi_{1}\left(B, x_{0}\right) \cong \underset{1}{*} * \mathbb{Z} \cong \mathbb{Z} * \mathbb{Z} \cong F_{2},
$$

where F_{2} is just $F(S)$ for $|S|=2$. We can see that $\mathbb{Z} * \mathbb{Z} \cong F_{2}$ by showing that they satisfy the same universal property.

Note that we had already figured this out when we studied the free group, where we realized F_{2} is the fundamental group of this thing.

More generally, as long as x_{0}, y_{0} in X and Y are "reasonable", $\pi_{1}(X \wedge Y) \cong \pi_{1}(X) * \pi_{1}(Y)$.

6. Problem 16

Let X be the 2-torus. Possibly, our favorite picture of the torus is (not a doughnut):

This is already a description of the torus as a cell complex! We start with our zero complex $X^{(0)}$ which is a point \bullet.
We then add our 1-cells to get $X^{(1)}$:

We now glue our square to the cell complex to get $X=X^{(2)}$:

matching up the colors and directions of arrows.
So we have our torus as a cell complex. What is its fundamental group? There are many ways we can do this computation, but this time we want to do it as a cell complex.

We start with $X^{(0)}$. This is a single point. So its fundamental group is $\pi_{1}\left(X^{(0)}\right)=1$.
When we add our two 1-cells, we get $\pi_{1}\left(X^{(1)}\right)=F_{2} /\langle a, b\rangle$.
Finally, to get $\pi_{1}(X)$, we have to quotient out by the boundary of our square, which is just $a b a^{-1} b^{-1}$. So we have

$$
\pi_{1}\left(X^{(2)}\right)=F_{2} /<a b a^{-1} b^{-1}>=<a, b \mid a b a^{-1} b^{-1}>\mathbb{Z}^{2} .
$$

We have the last congruence since we have two generators, and then we make them commute by quotienting the commutator out.

References

AH. Allen Hatcher, Algbraic topology,
AH. John M. Lee, Introduction to topological manifolds,
Lur1. Jacob Lurie, DAV G: Structured spaces, arXiv:0905.0459
Lur2. Jacob Lurie, Higher algebra, in progress
Lur3. Jacob Lurie, Higher topos theory
Lur4. Jacob Lurie, Spectral algebraic geometry, in progress
Wei. Charles Weibel, Homological algebra
Current address: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104
E-mail address: qze@math.upenn.edu

