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SELECTED SOLUTIONS SKETCH/HINT

QINGYUN ZENG

1. The Seifert-van Kampen theorem

1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement
of the theorem so that we don’t have to worry about that openness problem. We first start with a
definition.

Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor-
mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of
U , i.e. there exists a retraction r : U → A and r ' IdU relA.

This is something that is true most of the time, in sufficiently sane spaces.

Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation
retract.

Theorem 1.3. Let X be a space, A,B ⊆ X closed subspaces. Suppose that A, B and A ∩ B
are path connected, and A ∩ B is a neighbourhood deformation retract of A and B. Then for any
x0 ∈ A ∩B.

π1(X,x0) = π1(A, x0) ∗
π1(A∩B,x0)

π1(B, x0).

This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer
have to “fatten up” our A and B to make them open.

If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the
fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in
X and morphisms as homotopy classes of path in X, which can be regard as a global version of
π1(X).

1.2. A generalization of the Seifert-van Kampen theorem. Here’s a generalization of the
Seifert-van Kampen theorem by Jacob Lurie, which describes the entire weak homotopy type of X
in terms of any stoficiently nice covering of X by open sets.

Theorem 1.4. Let X be a topological space, let U(X) denote the collection of all open subsets of
X (partially ordered by inclusion). Let C be a small category and let χ : C → U(X) be a functor.
For every x ∈ X, let Cx denote the full subcategory of C spanned by those objects C ∈ C such that
x ∈ χ(C). Assume that χ satisfies the following condition:

(1) For every point x, the simplicial set N(Cx) is weakly contractible.

Then the canonical map limC∈C Sing(χ(C))→ Sing(X) exhibits the simplicial set Sing(X) as a
homotopy colimit of the diagram {Sing(χ(C))}C∈C.

Proof. See Higher algebra A.3.1. �
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2. Problem 4

Let G = (a, b : a4 = 1, b2 = 1, bab−1 = a−1). Since bab−1 = a−1, ba = a−1b. From this,

(2.1) ba2 = (ba)a = (a−1b)a = a−1(ba) = a−2b.

Similarly we can get ba3 = a−3b. Note that a−nb = a4−nb for 1 ≤ n ≤ 3. Hence we see that
G = {e, a, a2, a3, b, ab, a2b, a3b} since all other elements can be reduced by our observation. Now
we show that G is isomorphic to D4. Let φ : G → D4 be a homomorphism defined by φ(a) = a′,
φ(b) = b′, where a′ is a generator of rotation and b′ is a generator of reflexion on D4. Note that
D4 = {e, a′, a′2, a′3, b′, a′b, a′2b, a′3b} and satisfies the relation ban = a−nb. It’s easy to see that φ is
surjective. Since |G| = |D4|, φ is injective, hence an isomorphism.

3. Problem 6

Let m = xyx and n = xy. We claim that {m,n} generates H as well. In fact m−1n2 = y and
ny−1 = x and the result follows. Define a homomorphism φ : G → H by letting φ(a) = m and
φ(b) = n. Since m and n generate H, φ is onto. Now let φ(z) = e. Note that e ∈ H is generated
by xyxy−1x−1y−1, we can write it as

(3.1) (xyx)(y−1x−1)y−1 = mn−1(n−2m) = mn−3m,

since

(3.2) y−1 = (m−1n2)−1 = n−2m.

Hence ker(φ) is generated by ab−3a. In fact,

(3.3) ab−3 = ab−3e = ab−3(b3a−2) = a−1,

so ab−3a = e. Therefore, the ker(φ) is trivial and hence φ is an isomorphism.

4. Problem 14

Consider n-sphere Sn = {v ∈ Rn+1 : |v| = 1} for n ≥ 2. We want to find π1(S
n).

The idea is to write Sn as a union of two open sets. We let n = e1 ∈ Sn ⊆ Rn+1 be the North
pole, and s = −e1 be the South pole. We let A = Sn \ {n}, and B = Sn \ {s}. By stereographic
projection, we know that A,B ∼= Rn. The hard part is to understand the intersection.

To do so, we can draw a cylinder Sn−1 × (−1, 1), and project our A ∩ B onto the cylinder. We
can similarly project the cylinder onto A ∩B. So A ∩B ∼= Sn−1 × (−1, 1) ' Sn−1, since (−1, 1) is
contractible.

We can now apply the Seifert-van Kampen theorem. Note that this works only if Sn−1 is path-
connected, i.e. n ≥ 2. Then this tells us that

π1(S
n) ∼= π1(R

n) ∗
π1(Sn−1)

π1(R
n) ∼= 1 ∗

π1(Sn−1)
1

It is easy to see this is the trivial group. We can see this directly form the universal property of
the amalgamated free product, or note that it is the quotient of 1 ∗ 1, which is 1.

So for n ≥ 2, π1(S
n) ∼= 1.
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5. Problem 15

Suppose we take the wedge sum of two circles S1 ∧S1. We would like to pick A,B to be each of
the circles, but we cannot, since A and B have to be open. Notice that both A and B retract to the
circle. So π1(A) ∼= π1(B) ∼= Z, while A∩B is a cross, which retracts to a point. So π1(A∩B) = 1.

Hence by the Seifert-van Kampen theorem, we get

π1(S
1 ∧ S1, x0) = π1(A, x0) ∗

π1(A∩B,x0)
π1(B, x0) ∼= Z ∗

1
Z ∼= Z ∗ Z ∼= F2,

where F2 is just F (S) for |S| = 2. We can see that Z ∗ Z ∼= F2 by showing that they satisfy the
same universal property.

Note that we had already figured this out when we studied the free group, where we realized F2

is the fundamental group of this thing.
More generally, as long as x0, y0 in X and Y are “reasonable”, π1(X ∧ Y ) ∼= π1(X) ∗ π1(Y ).

6. Problem 16

Let X be the 2-torus. Possibly, our favorite picture of the torus is (not a doughnut):

This is already a description of the torus as a cell complex!
We start with our zero complex X(0) which is a point •.
We then add our 1-cells to get X(1):

We now glue our square to the cell complex to get X = X(2):
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matching up the colors and directions of arrows.
So we have our torus as a cell complex. What is its fundamental group? There are many ways

we can do this computation, but this time we want to do it as a cell complex.
We start with X(0). This is a single point. So its fundamental group is π1(X

(0)) = 1.

When we add our two 1-cells, we get π1(X
(1)) = F2/ < a, b >.

Finally, to get π1(X), we have to quotient out by the boundary of our square, which is just
aba−1b−1. So we have

π1(X
(2)) = F2/ < aba−1b−1 >=< a, b | aba−1b−1 > Z2.

We have the last congruence since we have two generators, and then we make them commute by
quotienting the commutator out.
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