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1. Covering space and étalé space

An étalé space (or étalé map) over B is an object p : E → B in Top/B such that p is a local
homeomorphism: that is, for every e ∈ E, there is an open set U 3 e such that the image p(U) is
open in B and the restriction of p to U is a homeomorphism p|U : U → p(U).

The set Ex = p−1(x) where x ∈ B is called the stalk of p over x.
The underlying set of the total space E is the union of its stalks.
Every covering space (even in the more general sense not requiring any connectedness axiom) is

an étalé space, but not vice versa.

2. Galois correspondance

In the lecture, we established a correspondence between covering spaces and fundamental groups.
We can have the following table of correspondences:

Covering spaces Fundamental group
(Based) covering spaces ←→ Subgroups of π1

Number of sheets ←→ Index
Universal covers ←→ Trivial subgroup

In fact, the role of fundamental groups is similar to the role of Galois groups in number the-
ory/algebraic geometry.

Grothendieck defined the fundamental group of a scheme, which is essentially the fundamental
group in étalé homotopy.

Let S be a connected scheme. A finite étalé cover of S is a finite flat surjection X → S such that
each fiber at a point s ∈ S is the spectrum of a finite étalé algebra over the local ring at s. Fix a
geometric point s : Spec(Ω)→ Ω.

For a finite étale cover, X → S, we consider the geometric fiber X ×S Spec(Ω), over s, and
denote by Fibs(X) its underlying set. This gives a set-valued functor on the category of finite étale
covers of X.

The étale fundamental group, π1(S, s) is defined to be the automorphism group of this functor.
If R = k is a field, then the étale fundamental group recovers Galois group.

3. Problem 2

There are 7 3-sheet covering of S1 ∨ S1 as shown in the picture below.

4. Problem 4

Let p : E → B be a covering map, where E and B are path connected spaces. Let b0 ∈ B, and
e0 ∈ p−1b0. Clearly, p∗ sends p∗(π1(E, e0)) into a subgroup of π1(B, b0). Let e1 be another point in
p−1(b0), we need show p∗(π1(E, e0)) and p∗(π1(E, e1)) are conjugate to each other. Since E is path
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Figure 1. All 3-sheet covering of S1 ∨ S1

connected, let c̃ be a path in E connecting e0 and e1. Clearly c = c̃ ◦ p is a loop in B based at b0.
Let [f̃ ] ∈ π1(E, e0), then c−1 · f̃ · c is a loop based at e1, so we have [c̃−1] · [f̃ ] · [c̃] ∈ π1(E, e1). Now,

p∗([c̃
−1] · [f̃ ] · [c̃]) =p∗[c̃

−1 · f̃ · c̃](4.1)

=[p ◦ (c̃−1 · f̃ · c̃)](4.2)

=[(p ◦ c̃−1) · (p ◦ f̃) · (p ◦ c̃)](4.3)

=[c−1 · f · c] = [c−1] · [f ] · [c](4.4)

Since [f ] = [(p ◦ f̃ ] = p∗[f̃ ], we see that Φc(f) = [c−1] · [f ] · [c] maps p∗(π1(E, e0)) to p∗(π1(E, e1))
and they are conjugate in π1(B, b0).

Conversely, let G be a subgroup of π1(B, b0) and is conjugate to p∗(π1(E, e0)). Hence there is
some [c] ∈ π1(B, b0) such that H = Φc(p∗(π1(E, e0))). Let c̃ be the unique lift of c starting from
e0 ∈ E and ends at c(1) = e1. Then we have p∗(π1(E, e1)) = Φc(p∗(π1(E, e0))). Therefore, we see
that as e0 ranges over the points of p−1(b0), p∗(π1(E, e0)) ranges precisely over a conjugacy class
of subgroups of π1(B, b0).

5. Hatcher 1.3.4

[a] Let X ⊂ R3 be a union of a sphere and a diameter. Consider X̃ to be as in Figure 2, which is
an infinite chain of spheres connected by lines. The covering p maps the spheres to original sphere
and all lines to the diameter.

Figure 2. Covering for the wedge of a sphere and a diameter

X̃ is simply connected since it is homotopic to a wedge sum of S2. Next we need show that p is
in fact a covering map. Let x ∈ X, and let U 3 x be an small open neighborhood of x. Then U can
either lie completely in the sphere or the diameter, or contain the intersection of the sphere and
diameter. In the both cases, p−1(U) are just infinite copies of U which are clearly disjoint. Each
slice is clearly homeomorphic to U . Therefore, p is a covering map.
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[b]
Let X now be a union of a sphere and a circle intersecting in two points. Denote the intersecting

points by a, b. X is homotopic to a sphere with two disjoint curves with different direction between
a and b. Each of the curve is homotopic a diameter between a and b. Therefore we can construct a
covering X̃ as in part (a) with two direction of chains at each intersection as in Figure 3. In fact, X̃

can be made from replacing all nodes by spheres in the cayley graph of two generators. X̃ is clearly

Figure 3. Covering for the wedge of a sphere and a circle

simply connected since it’s again a wedge sum of S2. Next, we need to show that the natural map
p is a covering map. As similar argument as before, for any small open neighborhood U of x ∈ X
can either be a piece of sphere or circle, or contain the intersection of the sphere and the circle. In
each case, p−1(U) are just countably infinite copies of U which are disjoint by construction, and
each slice is clearly homeomorphic to U . Therefore p is a covering map.
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