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1. Problem 9

a. Define p : R× R→ T 2 by setting p(x, y) = (e2πix, e2πiy) where (x, y) ∈ R2. Note that π1(T 2) =
Z × Z. For each element (m,n) ∈ Z × Z, the correspond covering transformation in R × R is
h : (x, y)→ (x+m, y + n). It’s obvious that h is a homeomorphism and satisfies ph = p. �

b. First the Klein bottle K equals [0, 1]2 by identifying corresponding edges (see HW 4). Define
p : R × R → K by the quotient map R2 7→ R2/(x, y) ∼ (x + 1, 1 − y) as shown in Figure 1.
From previous HW, we know π1(K) =< a, b|aba−1b = 1 >. For each element a, b ∈ π1(K) , the

Figure 1. Universal covering space of Klein bottle K

corresponding covering transformation is ha : (x, y) 7→ (x + 1, 1 − y) and hb : (x, y) 7→ (x, y + 1)
. �

2. Hatcher 1.3.5

Proof. Let p : X̃ → X be a covering space. For every point x in the left edge {0}× I of X, there is
a evenly covered neighborhood Ux. {Ux}x form an open cover for {0}× I. By compactness, we can
take a finite subcover {Ui}ni=1, then we can find a r > 0 such that Y = {(x, y) : d

(
(x, y), {0}×I

)
< r}

is contained in ∪ni=1Ui. We will show Y ∩X is homeomorphic to its lift in X̃. First pick a base point

(x0, y0) ∈ p−1
(
(0, 0)

)
. By unique path lifting property, we can uniquely lift {0}×I and [0, r] into X̃.

Let (x′, y′) be the end point of the lift of {0}×I, then taking (x′, y′) as starting point we can uniquely
lift [0, r]×{1}. Similarly, we starting from (1/n, 0) where 1/n < r, we can uniquely liftX∩{x = 1/n}
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. It remains to show that for each X ∩{x = 1/n}, whether the lift of (1/n, 1) on X ∩{x = 1/n} lies

on the lift of [0, r]×{1}. Note that on
(
∪n−1i=1 Ui ∩ ({0}× I)

)
∪ [0, 1/n]∪

(
∪n−1i=1 Ui ∩ ({1/n}× I)

)
,

we have unique lift of both paths. So what we need to show is that their lift intersects in the lift
of Un ∩X. This is easy since p is a covering map and Un is an evenly covered neighborhood, then
Un ∩ X is homeomorphic to its lift as we can specify some base point (x′′, y′′) in the lift of Un
where p((x′′, y′′)) ∈ Un ∩ Un−1 6= ∅. Therefore the end point of the lift of X ∩ {x = 1/n} coincides
with the lift of [0, r]× {1}, and this is true for all n with 1/n ≤ r. Since on each Ui, the lift of X
and X is homeomorphic, and two adjacent lifting neighborhoods agree on their intersection, the
restriction of p on this lift must be 1-1. Suppose not, say p(x) = p(y) ∈ X ∩ Y and x, y lie in the
lift constructed before. If x 6= y, there are 2 cases. If x and y lie in the same lift of Ui for some
i, then since p is a local homeomorphism, x 6= y, which gives a contradiction. Next suppose x lies
in the lift of Ui and y lies in the lift of Uj for i 6= j and they do not both lie in some Uk. Since p
is locally homeomorphic on Ui and Uj respectively, Ui ∩ Uj = ∅, otherwise their lift will coincide
in the intersection. Hence p is injective from the lift of X ∩ Y to X ∩ Y . Since p is also locally
homeomorphic, it’s a homeomorphism.

Clearly X is not simply connected since X∩Y contains nontrivial loops. In fact, X is homotopic
to an infinite wedge sum of S1’s. Since X ∩ Y is homeomorphic to its lift (pick arbitrary one), the

lift of any nontrivial loops is X ∩ Y again nontrivial. Hence X̃ cannot be simply connected. �

3. Hatcher 1.3.9

Let p : R → S1 be the covering space. Since π1(X) is finite and π1(S
1) = Z. But there is no

group homomorphism mapping from a finite group to Z. Hence f is zero.
So 0 = f∗(π1(X)) ⊂ pX(π1(R)). By Lifting Criterion,f lifts to f̂ : X → R. Since R is con-

tractible. By results in previous chapter, f̂ is nullhomotopic. Therefore, X is contractible, hence f
is nullhomotopic.

4. Hatcher 1.3.15

By assumption A ⊂ X and π1(X̃) = 0. Since p : Ã → A is a covering space. Let x0 ∈ A be

a basepoint and x̃0 ∈ Ã be its lift. Theorem 1.38 says that the path-connected covering spaces
corresponds to a subgroup p∗(π1(Ã, x̃0)) of π1(A, x0). Prove that the covering space p : Ã →
A corresponds to the subgroup which is the kernel of i : π1(A)π1(X), i.e. want to prove that

p∗(π1(Ã, x̃0)) = ker i∗ .

For a loop [γ] in p∗(π1(Ã, x̃0)), [γ] lifts to a loop γ starting at x̃0. Since Ã ⊂ X̃ , γ is a loop in
X.

But X̃ is simply-connected, so π1(X̃) = 0. Hence p∗(π1(X̃, x̃0)) = 0 is a trivial subgroup of

π1(X). i.e. X̃ corresponds to trivial subgroup of π1(X,x0). Hence γ is homotopic to a constant
loop in X. i.e. [γ] ' 1x0 . Therefore, [γ] ∈ ker i∗ : π1(A)→ π1(X).

The other direction is easy.
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