A priori Estimates

Brian Krummel
January 26, 2016

In previous lectures we considered the maximum principle for homogeneous equations. We will now consider supremum estimates in the case of inhomogeneous equations.

Theorem 1. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \). Suppose \(u \in C^0(\overline{\Omega}) \cap C^2(\Omega) \) satisfies
\[
Lu = a^{ij}D_{ij}u + b^i D_i u + cu \geq f \quad \text{in } \Omega
\]
for some functions \(a^{ij}, b^i, c, \) and \(f \) on \(\Omega \). Suppose \(L \) is an elliptic operator,
\[
\beta = \sup_{\Omega} |b^i| \lambda < \infty,
\]
and \(c \leq 0 \) in \(\Omega \). Then
\[
\sup_{\Omega} u \leq \sup_{\partial \Omega} u^+ + C \sup_{\Omega} \left| \frac{f^-}{\lambda} \right|
\]
for \(C = e^{(\beta+1)d} - 1 \), where \(d = \text{diam} \Omega \) and \(f^- = \max\{-f, 0\} \). Note that if \(Lu = f \) in \(\Omega \), we have
\[
\sup_{\Omega} |u| \leq \sup_{\partial \Omega} |u| + C \sup_{\Omega} \left| \frac{f}{\lambda} \right|
\]
for \(C = e^{(\beta+1)d} - 1 \).

Proof. Without loss of generality let \(\Omega \) lie between the slab \(0 < x_1 < d \). Set \(L_0 = a^{ij}D_{ij} + b^i D_i \). Let
\[
v = \sup_{\partial \Omega} u^+ + (e^{\alpha d} - e^{\alpha x_1}) \sup_{\partial \Omega} \frac{|f^-|}{\lambda},
\]
where \(\alpha \geq \beta + 1 \). We claim that \(Lu \geq f \geq Lv \) in \(\Omega \), in which case we can apply the comparison principle using the fact that \(u \leq v \) on \(\partial \Omega \) to conclude that \(u \leq v \) on \(\overline{\Omega} \). For \(\alpha \geq \beta + 1 \) we have
\[
L_0 e^{\alpha x_1} = (\alpha^2 a^{11} + \alpha b^1) e^{\alpha x_1} \geq \lambda (\alpha^2 - \alpha \beta) e^{\alpha x_1} \geq \lambda.
\]
Thus
\[
Lv = L_0 v + cv \leq L_0 v \quad \text{(since } c \leq 0, v \geq 0 \text{ in } \Omega) \]
\[
= -L_0(e^{\alpha x_1}) \sup_{\partial \Omega} \frac{|f^-|}{\lambda} \quad \text{(by linearity of } L) \]
\[
\leq -\lambda \sup_{\partial \Omega} \frac{|f^-|}{\lambda} \quad \text{(since } L_0(e^{\alpha x_1}) \geq \lambda \text{ in } \Omega) \]
\[
\leq f
\]
in Ω. By the comparison principle, $u \leq v$ on Ω. In particular,

$$\sup_{\Omega} u \leq \sup_{\partial \Omega} v = \sup_{\Omega} u^+ + (e^{\alpha d} - 1) \sup_{\Omega} \frac{|f^-|}{\lambda}.$$

Replacing u with $-u$ completes the proof in the case that $Lu = f$ in Ω.

Corollary 1. Let Ω be a bounded domain in \mathbb{R}^n. Suppose $u \in C^0(\Omega) \cap C^2(\Omega)$ satisfies

$$Lu = a^{ij}D_{ij}u + b^iD_iu + cu = f \text{ in } \Omega$$

for some functions a^{ij}, b^i, c, and f on Ω. Suppose L is an elliptic operator and

$$\beta = \sup_{\Omega} \frac{|b^i|}{\lambda} < \infty.$$

Suppose that Ω is a small enough domain that

$$\gamma = (e^{(\beta+1)d} - 1)\frac{c_+}{\lambda} < 1,$$

where $d = \text{diam } \Omega$ and $c = c_+ - c_-$ for $c_+ = \max\{c, 0\}$ and $c_- = \max\{-c, 0\}$. Then

$$\sup_{\Omega} u \leq \frac{1}{1 - \gamma} \left(\sup_{\partial \Omega} u^+ + C \sup_{\Omega} \frac{|f^-|}{\lambda} \right)$$

for some constant $C \in (0, \infty)$ depending only on β and d.

Proof. Observe that

$$a^{ij}D_{ij}u + b^iD_iu - c_- u \geq f - c_+ u \text{ in } \Omega.$$

By Theorem 1,

$$\sup_{\Omega} |u| \leq \sup_{\partial \Omega} |u| + C \sup_{\Omega} \frac{|f|}{\lambda} + C \sup_{\Omega} \frac{c_+}{\lambda} \sup_{\Omega} |u|$$

$$\leq \sup_{\partial \Omega} |u| + C \sup_{\Omega} \frac{|f|}{\lambda} + \gamma \sup_{\Omega} |u|.$$

Since $\gamma < 1$,

$$\sup_{\Omega} |u| \leq \frac{1}{1 - \gamma} \left(\sup_{\partial \Omega} u^+ + C \sup_{\Omega} \frac{|f^-|}{\lambda} \right).$$

Corollary 2. (Uniqueness of Solutions to the Dirichlet Problem on Small Domains) Let Ω be a bounded open set in \mathbb{R}^n. Consider the Dirichlet problem

$$Lu = a^{ij}D_{ij}u + b^iD_iu + cu = f \text{ in } \Omega,$$

$$u = \varphi \text{ on } \partial \Omega,$$

for some functions a^{ij}, b^i, c, and f on Ω and $\varphi \in C^0(\partial \Omega)$ such that L is an elliptic operator and

$$\beta = \sup_{\Omega} \frac{|b^i|}{\lambda} < \infty, \quad \sup_{\Omega} \frac{|c|}{\lambda} < \infty.$$
Suppose that Ω is a small enough domain that

$$\gamma = (e^{(\beta+1)d} - 1)\frac{c_+}{\lambda} < 1,$$

where $d = \text{diam } \Omega$ and $c = c_+ - c_-\text{ for } c_+ = \max\{c, 0\}$ and $c_- = \max\{-c, 0\}$. Then there is at most one solution $u \in C^0(\Omega) \cap C^2(\Omega)$ to the Dirichlet problem (i.e. there may be no solution or a unique solution but there cannot be two or more solutions).

Proof. Suppose u_1 and u_2 are two solutions to the Dirichlet problem. Then

\begin{align*}
L(u_1 - u_2) &= 0 \text{ in } \Omega, \\
u_1 - u_2 &= 0 \text{ on } \partial \Omega.
\end{align*}

By Corollary 1, $u_1 - u_2 = 0$ on $\overline{\Omega}$, i.e. $u_1 = u_2$ on $\overline{\Omega}$. \hfill \qed

References: Gilbarg and Trudinger, Section 3.3.