zq216@cam.ac.uk
Mathematical Tripos, Part III Functional Analysis
Dr. Andras Zsak • Michaelmas 2014 • University of Cambridge

Last Revision: October 4, 2016

Table of Contents

1 Preliminaries 1
1.1 Review of linear analysis 1
1.2 Hilbert spaces and spectral theory 1
1.3 Some important theorems in Banach spaces 1
1.4 Review of measure theory 5
2 Hahn-Banach theorems and LCS 5
2.1 The Hahn-Banach theorems 5
2.2 Bidual 8
2.3 Dual operators 9
2.4 Locally convex spaces 12
3 Risez Representation theorem 13
3.1 Risez representation theorem 14
$3.2 \quad L^{p}$ spaces 14
4 Weak Topologies 15
4.1 General weak topologies 15
4.2 Weak topologies on vector spaces 17
4.3 Weak and weak-* convergence 18
4.4 Hahn Banach separation theorem 19
5 The Krein-Milman theorem 25
6 Banach algebras 25
6.1 Elementary properties and examples 25
6.2 Elementary constructions 27
6.3 Group of units and spectrum 27
6.4 Commutative Banach algebra 29
7 Holomorphic functional calculus 29
$8 C^{*}$ algebras

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 Preliminaries

1.1 Review of linear analysis

1.2 Hilbert spaces and spectral theory

1.3 Some important theorems in Banach spaces

Lemma 1.1 (Risez). Let X be a normed space. Suppose Y is a closed proper subspace of X, then $\forall \epsilon>0, \exists\|x\|=1$ such that $d(x, Y)=\inf _{y \in Y}\|x-y\|>1-\epsilon$.

Proof. Pick $z \in X \backslash Y$. Since Y is closed, $d(z, Y)>0$, so there exists $y \in Y$ such that $(1-\epsilon)\|z-y\|<d(z, Y)$. Let $x=(z-y) /\|z-y\| \in B_{X}$,

$$
\begin{equation*}
d(x, Y)=d\left(\frac{z}{\|z-y\|}, Y\right)=\frac{d(z, Y)}{\|z-y\|}>1-\epsilon . \tag{1.1}
\end{equation*}
$$

Remark 1.1. Let Y be a subspace of X. Suppose there exists a $0 \leq \delta<1$ such that for every $x \in B_{X}$, there exists a $y \in Y$ with $\|x-y\| \leq \delta$. Then $\bar{Y}=X$.

Theorem 1.2. Let X be a normed space. Then the dimension of X is finite if and only if B_{X} is compact.

Proof. (\Rightarrow) Since $X \sim l_{2}^{n}$, the result follows from Heine-Borel theorem.
(\Leftarrow) Assume $\operatorname{dim} X=\infty$, we can construct a sequence $\left(x_{n}\right) \in B_{X}$ such that $\left\|x_{m}-x_{n}\right\|>1 / 2$ for $m \neq n$. This is done by induction: having found x_{1}, \cdots, x_{n}, we apply Risez's lemma to $Y=\operatorname{span}\left\{x_{1}, \cdots, x_{n}\right\}$, so there exists an $x_{n+1} \in B_{X}$ such that $d\left(x_{n+1}, Y\right)>1 / 2$. Note that $x_{1} \in B_{X}$ is arbitrary. Then we are done.

Theorem 1.3 (Stone-Weierstrass). Let K be a compact Hausdorff space. Consider $C^{\mathbb{R}}(K)=$ $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is continuous $\}$ with the sup norm. Suppose A is a subalgebra of $C^{\mathbb{R}}(K)$ that separates the points of $K(\forall x \neq y$ in $K, \exists f \in A, f(x) \neq f(y))$ and contains the constant function, then $\bar{A}=C^{\mathbb{R}}(K)$.

Proof. First we claim that if we are given two disjoint closed subsets E, F of K, then there exists $f \in A$ such that $-1 / 2 \leq f \leq 1 / 2$ on K, where $-1 / 4 \leq f$ on E and $f \geq 1 / 4$ on F.
Then we are done. Let $g \in C^{\mathbb{R}}(K)$, with $\|g\|_{\infty} \leq 1$. Then we apply the claim to $E=\{g \leq$ $-1 / 4\}, F=\{g \geq 1 / 4\}$, then $\|f-g\|_{\infty} \leq \frac{3}{4}$. By Risez's lemma, $\bar{A}=C^{\mathbb{R}}(K)$.
Proof of the claim. Fix $x \in E$. For any $y \in F, \exists h \in A$ such that $h(x)=0, h(y)>0$, and $h \geq 0$ on K. There exists an open neighborhood V of y such that $h>0$ on V. By an easy
compactness argument, we can find a $g=g_{x} \in A$ such that $g(x)=0, g>0$ on F, and $0 \leq g \leq 1$ on K.
There exists $R=R_{x}>0$ such that $g>\frac{2}{R}$ on F, and an open neighborhood $U=U_{x}$ of x such that $g<\frac{1}{2 R}$ on U. Do this for every $x \in E$. By compactness, we can find $x_{1}, \cdots, x_{m} \in E$ such that $\cup_{i=1}^{m} U_{x_{i}} \supset E$. Now we write $g_{i}=g_{x_{i}}, R_{i}=R_{x_{i}}, U_{i}=U_{x_{i}}$, for $1 \leq i \leq m$.
For fixed i, on U_{i}, we have

$$
\begin{equation*}
\left(1-g_{i}^{n}\right)^{R_{i}^{n}} \geq 1-\left(g_{i} R_{i}\right)^{N}=1-2^{-n} \rightarrow 1 \tag{1.2}
\end{equation*}
$$

On F, we have

$$
\begin{equation*}
\left(1-g_{i}^{n}\right)^{R_{i}^{n}} \leq \frac{1}{\left(1+g_{i}^{n}\right)^{R_{i}^{n}}} \leq \frac{1}{\left(g_{i} R_{i}\right)^{n}} \leq 2^{-n} \rightarrow 0 \tag{1.3}
\end{equation*}
$$

Now we can find an $n_{i} \in \mathbb{N}$ such that if we let $h_{i}=1-\left(1-g_{i}^{n_{i}}\right)^{R_{i}^{n_{i}}}$, then $h_{i} \leq 1 / 4$ on U_{i} and $h_{i} \geq\left(\frac{3}{4}\right)^{1 / m}$ on F.
Now let $h=h_{1} \cdot h_{2} \cdots h_{m}$, then $h \in A$ and $0 \leq h \leq 1$ on K. Note that $h \leq 1 / 4$ on E and $h \geq 3 / 4$ on F. Finally, let $f=h-1 / 2$.

Remark 1.2. We have used the Euler's inequality:

$$
\begin{equation*}
1-N x \leq(1-x)^{N} \leq \frac{1}{(1+x)^{N}} \leq \frac{1}{N x} \tag{1.4}
\end{equation*}
$$

for $0<x<1$ and $N \geq 1$.
Remark 1.3. Stone-Weierstrass fails for complex scalars. In fact, let $\Delta=\{z \in \mathbb{C}:|z|=1\}$ and $D=$ int $\Delta=\delta^{o}=\{z \in C:|z|<1\}$. Consider the disk algebra

$$
\begin{equation*}
A(\Delta)=\{f \in C(\Delta): f \text { is analytic on } D\} \tag{1.5}
\end{equation*}
$$

Then $A(\Delta)$ is a closed subalgebra of $C(\Delta)$.
Theorem 1.4 (Complex Stone-Weierstrass). Let K be a compact Hausdorff space. Suppose A is a subalgebra of $C^{\mathbb{C}}(K)=\{f: K \rightarrow \mathbb{C}: f$ is continuous $\}$ that separates points, contains the constant functions, and are closed under complex conjugation($f \in A \Rightarrow \bar{f} \in A$), then $\bar{A}=C^{\mathbb{C}}(K)$.

Remark 1.4. There is a more general version for locally compact Hausdorff spaces.
Lemma 1.5 (Open mapping lemma). Let X be a Banach space, and Y be a normed spaces. Let $T: X \rightarrow Y$ be a bounded linear map. Assume that there exists an $M \geq 0$, and $0 \leq \delta<1$ such that $T\left(M B_{X}\right)$ is δ-dense in B_{Y}. Then T is surjective, that is, for any $y \in Y$ we can find an $x \in X$ such that $y=T x$, and

$$
\begin{equation*}
\|x\| \leq \frac{M}{1-\delta}\|y\| \tag{1.6}
\end{equation*}
$$

i.e. $T\left(\frac{M}{1-\delta} B_{X}\right) \supset B_{Y}$. Moreover, Y is complete.

Definition 1.1. If A and B are subsets of a metric space (M, d), and let $\delta>0$, then A is δ-dense in B if for any $b \in B$, we can find an $a \in A$ such that $d(a, b) \leq \delta$.

Proof. Let $y \in B_{Y}$, then there exists $x_{1} \in M B_{X}$ such that $\left\|y-T x_{1}\right\| \leq \delta$. Then there exists an $x_{2} \in M B_{X}$ such that

$$
\begin{equation*}
\left\|\frac{y-T x_{1}}{\delta}-T x_{2}\right\| \leq \delta \tag{1.7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left\|y-T x_{1}-\delta T x_{2}\right\| \leq \delta^{2} \tag{1.8}
\end{equation*}
$$

Note that $\frac{y-T x_{1}}{\delta} \in B_{y}$. Continue inductively, we obtain a sequence $\left\{x_{n}\right\}$ in $M B_{X}$ such that

$$
\begin{equation*}
\left\|y-T x_{1}-T\left(\delta x_{2}\right)-\cdots-T\left(\delta^{n-1} x_{n}\right)\right\| \leq \delta^{n} \tag{1.9}
\end{equation*}
$$

for any $n \in \mathbb{N}$. Let $x=\sum_{n=1}^{\infty} \delta^{n-1} x_{n}$. Since

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|\delta^{n-1} x_{n}\right\| \leq \delta^{n-1} M=\frac{M}{1-\delta} \tag{1.10}
\end{equation*}
$$

so the series converges and $\|x\| \leq \frac{M}{1-\delta}$. Now

$$
\begin{equation*}
y-T x=\lim _{n \rightarrow \infty}\left(y-\sum_{k=1}^{n} T\left(\delta^{k-1} x_{k}\right)\right)=0 . \tag{1.11}
\end{equation*}
$$

$\underline{F o r}$ the last part, let \tilde{Y} be the completion of Y. Consider T as a map $X \rightarrow \tilde{Y}$. Since $\overline{B_{Y}}=B_{\tilde{Y}}, T\left(M B_{X}\right)$ is δ-dense in B_{Y} where $0 \leq \delta<1$. So T is onto as a map from X to \tilde{Y}. Hence $Y=\tilde{Y}$.

Remark 1.5. If $\overline{T\left(B_{X}\right)} \supset B_{Y}$, then $T\left(B_{X}^{o}\right) \supset B_{Y}^{o}$.

Quotient spaces Let X be a normed space, $Y \subset X$ a closed subspace. Then X / Y becomes a normed space, where

$$
\begin{equation*}
\|x+Y\|=d(x, Y)=\inf _{y \in Y}\|x+y\| . \tag{1.12}
\end{equation*}
$$

(Y closed is needed to show that if $Z \in X / Y$ with $\|z\|=0$, then $z=0$)
Proposition 1.6. Let X be a Banach space and $Y \subset X$ be a closed subspace. Then X / Y is complete.

Proof. Consider the quotient map $q: X \rightarrow X / Y$ defined by $q(x)=x+Y$, then $q \in \mathcal{B}(X, X / Y)$. In fact,

$$
\begin{equation*}
\|q(x)\|=\|x+Y\| \leq\|x\| \tag{1.13}
\end{equation*}
$$

so $\|q\| \leq 1$. Given $x+Y \in B_{X / Y}^{o}$, there exists $y \in Y$ such that $\|x+y\|<1$, and $q(x+y)=x+Y$, so $B_{X / Y}^{o} \subset q\left(B_{X}^{o}\right)$. Thus $B_{X / Y}^{o}=q\left(B_{X}^{o}\right)$ (note that the other direction follows from $\|q\| \leq 1$). In particular, $\overline{q\left(B_{X}\right)} \supset B_{X / Y}$. By open mapping lemma, X / Y is complete.

Proposition 1.7. Every separable Banach space is a quotient of ℓ_{1}, i.e. there exists a closed subspace Y of ℓ_{1} such that $\ell_{1} / Y \simeq X$.

Proof. Let $\left\{x_{n}\right\}$ be dense in B_{X}. Define $T: \ell_{1} \rightarrow X$ by $T(a)=\sum_{n=1}^{\infty} a_{n} x_{n}$, where $a=\left\{a_{n}\right\}$. Note that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|a_{n} x_{n}\right\| \leq \sum_{n=1}^{\infty}\left|a_{n}\right|=\|a\|_{1}<\infty \tag{1.14}
\end{equation*}
$$

so $T \in \mathcal{B}\left(\ell_{1}, X\right)$ with $\|T\| \leq 1$. Thus $T\left(B_{\ell_{1}}^{o}\right) \subset B_{X}^{o}$. Since $\left\{x_{n}: n \in \mathbb{N}\right\} \subset T\left(B_{\ell_{1}}\right)$, $B_{X} \subset \overline{T\left(B_{\ell_{1}}\right)}$. By the open mapping lemma, $B_{X}^{o} \subset T\left(B_{\ell_{1}}^{o}\right)$. Thus $B_{X}^{o}=T\left(B_{\ell_{1}}^{o}\right)$.
Now let $Y=\operatorname{ker} T$ which is a closed subspace of ℓ_{1}. Let \tilde{T} be the unique linear map such that

commutes, where $q: \ell_{1} \rightarrow \ell_{1} / Y$ is the quotient map. Note that \tilde{T} is a bijection

$$
\begin{equation*}
\tilde{T}\left(B_{\ell_{1} / Y}^{o}\right)=\tilde{T}\left(q\left(B_{\ell_{1}}^{o}\right)\right)=T\left(B_{\ell_{1}}^{0}\right)=B_{X}^{o} . \tag{1.15}
\end{equation*}
$$

Hence \tilde{T} is an isometric isomorphism.
Recall that a topological space K is normal if whenever E and F are disjoint closed subsets of K, there exist disjoint open sets U and V such that $E \subset U$ and $F \subset V$. For example, a compact Hausdorff space is normal.

Lemma 1.8 (Uryson's). Let K be a normal space, and let E and F be disjoint closed subsets of X, then there exists a continuous function $f: K \rightarrow[0,1]$ such that $f=0$ on E and $f=1$ on F.

So $C(K)$ separates the points of K for a compact Hausdorff space K.
Theorem 1.9 (Tietze extension theorem). Let K be a normal topological space, and let L be a closed subspace. Suppose $g: L \rightarrow \mathbb{R}$ is continuous and bounded, then there exists a continuous and bounded function $f: K \rightarrow \mathbb{R}$ such that $\left.f\right|_{L}=g$ and $\|f\|_{\infty}=\|g\|_{\infty}$.

Remark 1.6. Assume $f: K \rightarrow \mathbb{R}$ is continuous, $\left.f\right|_{L}=g$. Define

$$
\phi(\lambda)= \begin{cases}\lambda & \text { if }|\lambda| \leq\|g\|_{\infty} \tag{1.16}\\ \frac{\lambda}{\mid \lambda}\|g\|_{\infty} & \text { if }|\lambda|>\|g\|_{\infty}\end{cases}
$$

Then ϕ is continuous with $\left.(\phi \circ f)\right|_{L}=g$ and $\|\phi \circ f\|_{\infty}=\|g\|_{\infty}$.
Proof. Let $X=C_{b}(K)=\{f: K \rightarrow \Re: f$ is continuous and bounded $\}$, then X is a Banach space with sup norm. Let $Y=C_{b}(L)$ and consider the map $R: X \rightarrow Y$ defined by $R(f)=\left.f\right|_{L}$. Clearly $R \in \mathcal{B}(X, Y)$ and $\|R\| \leq 1$. We have to show that R is onto. In fact, we will show $R\left(B_{X}\right)=B_{Y}$.

Let $g \in B_{Y}$, apply the Uryson's lemma with $E=\{g \leq-1 / 3\}$ and $F=\{g \geq 1 / 3\}$ to obtain a continuous function $f: K \rightarrow[-1 / 3,1 / 3]$ such that $f=-1 / 3$ on E and $f=1 / 3$ on F. Then $f \in \frac{1}{3} B_{X}$ and

$$
\begin{equation*}
\|R f-g\|_{\infty} \leq 2 / 3 \tag{1.17}
\end{equation*}
$$

So $R\left(\frac{1}{3} B_{X}\right)$ is $\frac{2}{3}$-dense in B_{Y}. By the open mapping lemma,

$$
\begin{equation*}
R\left(\frac{\frac{1}{3} B_{X}}{1-2 / 3}\right) \supset B_{Y} \tag{1.18}
\end{equation*}
$$

i.e. $R\left(B_{X}\right) \supset B_{Y}$.

Remark 1.7. The complex version is also true.

1.4 Review of measure theory

2 Hahn-Banach theorems and LCS

2.1 The Hahn-Banach theorems

For a normed space X, we write X^{*} for its dual space, i.e.

$$
\begin{equation*}
X^{*}=\mathcal{B}(X, \mathbb{R}) \tag{2.1}
\end{equation*}
$$

(or \mathbb{C} instead of \mathbb{R}), which is the space of all bounded linear functionals on $X . X^{*}$ is always complete with the operator norm

$$
\begin{equation*}
\|f\|=\sup \left\{|f(x)|: x \in B_{X}\right\} \tag{2.2}
\end{equation*}
$$

So $|f(x)| \leq\|f\| \cdot\|x\|$ for all $x \in X$ and $f \in X^{*}$. We will use $<x, f>$ as notation for $f(x)$.
Definition 2.1. Let X be a real vector space. A functional p is called

- positive homogeneous if $p(t x)=t p(x)$, for all $t \geq 0$ and $x \in X$.
- subadditive if $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$.

Theorem 2.1 (Hahn-Banach). Let X be a real vector space, and p be a positive homogeneous, subadditive functional on X. Let Y be a subspace of X and $g: Y \rightarrow \mathbb{R}$ be a linear functional such that $g(y) \leq p(y)$ for all $y \in Y$. Then there exists a linear functional $f: X \rightarrow \mathbb{R}$ such that $\left.f\right|_{Y}=g$ and $f(x) \leq p(x)$ for all $x \in X$.

Recall: let (P, \leq) be a non-empty poset. A chain is a subset $A \subset P$ which is linearly ordered by \leq. An element $x \in P$ is an upper bound for a subset A if $a \leq x$ for all $a \in A$. An element $x \in P$ is a maximal element of P if whenever $x \leq y$ for some $y \in P$, then $y=x$. We will use the Zorn's lemma in the proof of the Hahn-Banach theorem.

Lemma 2.2 (Zorn's). Let $P \neq \emptyset$. If every non-empty chain in P has an upper bound, then P has a maximal element.

Proof of Theorem 2.1. Let

$$
\begin{equation*}
P=\left\{(Z, h): h: Z \rightarrow \mathbb{R} \text { is a linear such that }\left.h\right|_{Y}=g, h(z) \leq p(z) \forall z \in Z,\right\}, \tag{2.3}
\end{equation*}
$$

where Z is a subspace of X, Y is a subspace of Z. Then P is non-empty since $(Y, g) \in P$. Let $\left\{\left(Z_{i}, h_{i}\right): i \in I\right\}$ be a non-empty chain. Let $Z=\bigcup_{i \in I} Z_{i}$, and define $h: Z \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
h(z)=h_{i}(z) \quad \text { for } z \in Z_{i}, i \in I . \tag{2.4}
\end{equation*}
$$

Then (Z, h) is an upper bound for the chain. (Note that $\left(Z_{1}, h_{1}\right) \leq\left(Z_{2}, h_{2}\right)$ iff $Z_{1} \subset Z_{2}$ and $\left.h_{1}=\left.h_{2}\right|_{Z_{1}}\right)$
By Zorn's lemma, there exists a maximal element (W, f). We need show $W=X$. Suppose not, pick an $x_{0} \in X-W$. Let $W_{1}=W \oplus \mathbb{R} x_{0}$ and define $f_{1}: W_{1} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f_{1}\left(x+\lambda x_{0}\right)=f(x)+\lambda \alpha \tag{2.5}
\end{equation*}
$$

where $x \in W, \lambda \in \mathbb{R}$, and α is to be determined. We want

$$
\begin{equation*}
f_{1}\left(x+\lambda x_{0}\right) \leq p\left(x_{\lambda} x_{0}\right) \tag{2.6}
\end{equation*}
$$

for all $x \in W$ and $\lambda \in \mathbb{R}$. By positive homogeneity, it suffices to have

$$
\begin{equation*}
f_{1}\left(x+x_{0}\right) \leq p\left(x+x_{0}\right) \quad \text { and } \quad f_{1}\left(x-x_{0}\right) \leq p\left(x-x_{0}\right) \tag{2.7}
\end{equation*}
$$

which is

$$
\begin{equation*}
f(x)+\alpha \leq p\left(x+x_{0}\right) \quad \text { and } \quad f(x)-\alpha \leq p\left(x-x_{0}\right) . \tag{2.8}
\end{equation*}
$$

By rearranging the term, this is equivalent to

$$
\begin{equation*}
f(y)-p\left(y-x_{0}\right) \leq \alpha \leq p\left(x+x_{0}\right)-f(x) \tag{2.9}
\end{equation*}
$$

for any $x, y \in W$. Hence α exists iff

$$
\begin{equation*}
f(y)-p\left(y-x_{0}\right) \leq p\left(x+x_{0}\right)-f(x) \tag{2.10}
\end{equation*}
$$

for any $x, y \in W$. But this always holds since

$$
\begin{equation*}
f(x)+f(y)=f(x+y) \leq p(x+y) \leq p\left(x+x_{0}\right)+p\left(y-x_{0}\right) \tag{2.11}
\end{equation*}
$$

Therefore, $\left(W_{1}, f_{1}\right) \in P$ which is strictly bigger that (W, f). But this contradict the maximality of (W, f). Hence $W=X$.

Definition 2.2. A seminorm on a real or complex vector space X is a function $p: X \rightarrow \mathbb{R}$ (or \mathbb{C}) such that

- $p(x) \geq 0$ for all $x \in X$,
- $p(\lambda x)=|\lambda| p(x)$ for all $x \in X$ and λ is a scalar,
- $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$.

Remark 2.1. We have the following inclusions:

$$
\begin{equation*}
\text { positive homogeneous+subadditive } \rightarrow \text { seminorm } \rightarrow \text { norm } \tag{2.12}
\end{equation*}
$$

Theorem 2.3 (Hahn-Banach). Let X be a real or complex vector space, and p a seminorm on X. Given a subspace $Y \subset X$, and a linear functional g on Y such that

$$
\begin{equation*}
|g(y)| \leq p(y) \quad \forall y \in Y \tag{2.13}
\end{equation*}
$$

Then g extends to a linear functional f on X such that

$$
\begin{equation*}
|f(x)| \leq p(x) \quad \forall x \in X \tag{2.14}
\end{equation*}
$$

Proof. (Real scalar) We have $g(y) \leq p(y) \forall y \in Y$. By Theorem 2.1, there exists $f: X \rightarrow \mathbb{R}$ such that $\left.f\right|_{Y}=g$ and $f(x) \leq p(x)$ for all $x \in X$. Since

$$
\begin{equation*}
-f(x)=f(-x) \leq p(-x)=p(x) \quad \forall x \in X \tag{2.15}
\end{equation*}
$$

we have $|f(x)| \leq p(x)$.
(Complex scalar) Consider $g_{1}=\operatorname{Re}(g)$, that is, $g_{1}(y)=\operatorname{Re}(g(y))$, which is a real linear map $Y \rightarrow \mathbb{R}$ and

$$
\begin{equation*}
\left|g_{1}(y)\right| \leq|g(y)| \leq p(y) \quad \forall y \in Y \tag{2.16}
\end{equation*}
$$

By the real case, there exists a real linear functional $f_{1}: X \rightarrow \mathbb{R}$ such that $\left.f_{1}\right|_{Y}=g_{1}$ and $\left|f_{1}(x)\right| \leq p(x)$ for all $x \in X$. Now we seek a complex linear functional $f: X \rightarrow \mathbb{C}$ such that $\operatorname{Re}(f)=f_{1}$. In fact, such an f is unique. Write $f(x)=f_{1}(x)+i f_{2}(x)$. Note that

$$
\begin{equation*}
f(x)=-i f(i x)=-i f_{1}(i x)+f_{2}(i x) \tag{2.17}
\end{equation*}
$$

so

$$
\begin{equation*}
f(x)=f_{1}(x)-i f_{1}(i x) \tag{2.18}
\end{equation*}
$$

Define f by this formula, so f is real-linear and $f(i x)=i f(x)$ for all $x \in X$. Hence $f: X \rightarrow \mathbb{C}$ is complex-linear and $\operatorname{Re}(f)=f_{1}$. Note that now

$$
\begin{equation*}
\operatorname{Re}\left(\left.f\right|_{Y}\right)=\left.f_{1}\right|_{Y}=g_{1}=\operatorname{Re}(g) \tag{2.19}
\end{equation*}
$$

By uniqueness, $f \mid y=g$. Given $x \in X$, choose a $\lambda \in \mathbb{C}$ with $|\lambda|=1$ such that

$$
\begin{equation*}
|f(x)|=\lambda f(x)=f(\lambda x)=f_{1}(\lambda x) \leq p(\lambda x)=p(x) \tag{2.20}
\end{equation*}
$$

Remark 2.2. If X is a complex normed space, then $\left(X^{*}\right)_{\mathbb{R}} \rightarrow\left(X_{\mathbb{R}}\right)^{*}, f \mapsto \operatorname{Re}(f)$ is an isometric isomorphism (real linear).
Corollary 2.4. Let $x_{0} \in X$, then there exists a linear functional on X such that $f\left(x_{0}\right)=p\left(x_{0}\right)$, and $|f(x)| \leq p(x) \forall x \in X$.

Proof. Let $Y=\operatorname{span}\left\{x_{0}\right\}$, and define $g\left(\lambda x_{0}\right)=\lambda p\left(x_{0}\right)$ for all λ. Then g is a linear functional
on Y. By Theorem 2.3, g extends to a linear functional f on X such that $|f(x)| \leq p(x)$ $\forall x \in X$, and $f\left(x_{0}\right)=g\left(x_{0}\right)=p\left(x_{0}\right)$.
Theorem 2.5 (Hahn-Banach). Let X be a normed space, then

- If Y is a subspace of $X, g \in Y^{*}$, then there exists $f \in X^{*}$ such that $\left.f\right|_{Y}=g$ and $\|f\|=\|g\|$.
- If $x_{0} \in X$ and $x_{0} \neq 0$, then there exists an $f \in S_{X^{*}}$ such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$.

Proof. a) Define $p(x)=\|g\| \cdot\|x\|$. Then this is a seminorm on X. Since $\|g(y)\| \leq$ $\|g\| \cdot\|y\|=p(y)$, by Theorem 2.3 there exists linear functional f on X such that $\left.f\right|_{Y}=g$ and $|f(x)| \leq p(x)=\|g\| \cdot\|x\|$ for all $x \in X$. Hence $f \in X^{*}$ with $\|f\| \leq\|g\|$. So $\|f\|=g \|$.
b) Let $Y=\operatorname{span}\left\{x_{0}\right\}$, and define $g: Y \rightarrow$ scalar by $g\left(\lambda x_{0}\right)=\lambda\left\|x_{0}\right\|$. Then $g \in Y^{*}$ and $\|g\|=1$. By a), there exists an $f \in X^{*}$ with $\left.f\right|_{Y}=g$ and $\|f\|=\|g\|=1$. In particular, $f\left(x_{0}\right)=g\left(x_{0}\right)=\left\|x_{0}\right\|$.
Remark 2.3. a) can be viewed as a linear version of Tietze's extension theorem.
Remark 2.4. b) says that X^{*} separates the points of X : if $x \neq y$ in X, apply b) to $x_{0}=x-y$. Thus there are plenty of linear functionals on X.

Remark 2.5. The functional f in b) is call the norming functional for x_{0} or the supporting functional at x_{0}. It shows that

$$
\begin{equation*}
\left\|x_{0}\right\|=\sup \left\{\left|f\left(x_{0}\right)\right|: f \in B_{X^{*}}\right\} . \tag{2.21}
\end{equation*}
$$

In complex plane, we can replace $f\left(x_{0}\right)$ by $\operatorname{Re}\left(f\left(x_{0}\right)\right)$. Assume that $\left\|x_{0}\right\|=1$, then the half-space $\{x \in X: f(x) \leq 1\}$ (or $\{x \in X: \operatorname{Re}(f(x)) \leq 1\}$ in the complex case) is a sort of tangent to B_{X} at x_{0}.

2.2 Bidual

For a normed space X, we write $X^{* *}$ for $\left(X^{*}\right)^{*}=\mathcal{B}(X$, scalar $)$, which is the Banach space of all bounded linear functionals on X^{*} with the operator norm. For $x \in X$, we define $\hat{x}: X^{*} \rightarrow \mathbb{R}($ or $\mathbb{C})$ by $\hat{x}(f)=f(x)$ (evaluation at $\left.x\right)$. Then $\hat{x} \in X^{* *}$ and $\|\hat{x}\| \leq\|x\|$. The map $x \mapsto \hat{x}: X \rightarrow X^{* *}$ is called the canonical embedding.

Theorem 2.6. The canonical embedding defined above is an isometric isomorphism of X into $X^{* *}$.

Proof. For $x \in X$, it's easy to show that \hat{x} is linear. Since

$$
\begin{equation*}
|\hat{x}(f)| \leq|f(x)| \leq\|f\| \cdot\|x\| \quad \forall f \in X^{*} \tag{2.22}
\end{equation*}
$$

so $x \in X^{* *}$ and $\|\hat{x}\| \leq\|x\|$. By Theorem 2.5, there exists $f \in B_{X^{*}}$ such that $\|x\|=f(x)$. So

$$
\begin{equation*}
\|\hat{x}\| \geq|\hat{x}(f)|=\|x\| \tag{2.23}
\end{equation*}
$$

Therefore, $\|\hat{x}\|=\|x\|$. Clearly, the map $x \mapsto \hat{x}$ is linear.

Remark 2.6. Using the bracket notation, we have

$$
\begin{equation*}
<f, \hat{x}>=<x, f>=f(x) \tag{2.24}
\end{equation*}
$$

for $x \in X, f \in X^{*}$.
Remark 2.7. The image $\hat{X}=\{\hat{x}: x \in X\}$ of the canonical embedding in $X^{* *}$ is closed iff X is complete.

Remark 2.8. In general, the closure of \hat{X} in $X^{* *}$ is a Banach space of which X is a dense subspace. So we proved that any normed space X has a completion which is a pair (Z, j) where Z is a Banach space, and $j: X \rightarrow Z$ is isometric such that $\overline{j(X)}=Z$. The completion is unique up to isomorphisms. If $\left(Z_{1}, j_{1}\right)$ and $\left(Z_{2}, j_{2}\right)$ are both completions, then there exists a unique isometric isomorphism $\theta: Z_{1} \rightarrow Z_{2}$ such that the following diagram

commutes, i.e. $\theta \circ j_{1}=j_{2}$.
Definition 2.3. A normed space X is reflexive if the canonical embedding of X into $X^{* *}$ is surjective, i.e. $\hat{X}=X^{* *}$.

By definition a reflexive space must be complete.
Example 2.1. The spaces ℓ_{p} for $1<p<\infty$, Hilbert spaces, and finite-dimensional spaces are all reflexive.

Example 2.2. The spaces $c_{0}, \ell_{1}, L_{1}[0,1]$ are not reflexive.
Remark 2.9. There are Banach spaces X with $X \simeq X^{* *}$ which are not reflexive. So for $1<p<\infty$, it is not sufficient to say that $\ell_{p}^{* *} \simeq \ell_{q}^{*} \simeq \ell_{p}$ (where $\frac{1}{p}+\frac{1}{q}=1$) implies ℓ_{p} is reflexive. One also has to verify that this isomorphism is indeed the canonical embedding.

2.3 Dual operators

Recall that for normed linear spaces X, Y, we denote the space of bounded linear maps $T: X \rightarrow Y$ by $\mathcal{B}(X, Y)$. This is a normed space in the operator norm:

$$
\begin{equation*}
\|T\|=\sup \left\{\|T x\|: x \in B_{X}\right\} \tag{2.25}
\end{equation*}
$$

Moreover, $\mathcal{B}(X, Y)$ is complete if and only is Y is.
We define the dual operator of $T, T^{*}: Y^{*} \rightarrow X^{*}$ by $T^{*}(g)=g \circ T$ for $g \in Y^{*}$, i.e. $T *(g)(x)=g(T x)$ for $x \in X, g \in Y^{*}$. In bracket notation,

$$
\begin{equation*}
<x, T^{*} g>=<T x, g> \tag{2.26}
\end{equation*}
$$

T^{*} is well-defined since the composite of continuous linear maps is continuous and linear. Moreover, $T * \in \mathcal{B}\left(Y^{*}, X^{*}\right)$ and

$$
\begin{align*}
\left\|T^{*}\right\| & =\sup _{g \in B_{Y^{*}}}\left\|T^{*} g\right\| \tag{2.27}\\
& =\sup _{g \in B_{Y^{*}}} \sup _{x \in B_{X}}\|g \circ T(x)\| \tag{2.28}\\
& =\sup _{x \in B_{X}} \sup _{g \in B_{Y^{*}}}\|g(T x)\| \tag{2.29}\\
& =\sup _{x \in B_{X}}\|(T x)\|=\|T\| . \tag{2.30}
\end{align*}
$$

Example 2.3. Let $1<p<\infty$, define $T: \ell_{p} \rightarrow \ell_{p}$ to be the right shift operator by $T\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right)$, then $T^{*}: \ell_{p}^{*} \simeq \ell_{q} \rightarrow \ell_{q} \simeq \ell_{p}^{*}$ is the left shift operator.

Properties of dual operators

- $\left(I d_{X}\right)^{*}=I d_{X^{*}}$.
- When X and Y are Hilbert spaces, the dual operator T^{*} corresponds the adjoint of T by identifying X^{*} and Y^{*} with X and Y respectively.
- $(\lambda S+\mu T)^{*}=\lambda S^{*}+\mu T^{*}$ for scalars λ, μ, and $S, T \in \mathcal{B}(X, Y)$. In fact,

$$
\begin{align*}
<x,(\lambda S+\mu T)^{*}(g)> & =<(\lambda S+\mu T) x, g> \tag{2.31}\\
& =\lambda<S x, g>+\mu<T x, g> \tag{2.32}\\
& =\lambda<x, S^{*} g>+\mu<x, T^{*} g> \tag{2.33}\\
& =<x,\left(\lambda S^{*}+\mu T^{*}\right) g> \tag{2.34}
\end{align*}
$$

Note that there is no complex conjugation here which is different from adjoints in Hilbert spaces. This is due to the fact that the identification of a Hilbert space with its dual is conjugate linear in the complex case.

- $(S T) *=T^{*} S^{*}$, where $T \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, Z)$.
- If $X \sim Y$, then $X^{*} \sim Y^{*}$.

Remark 2.10. The map $T \mapsto T^{*}$ is an isometric isomorphism of $\mathcal{B}(X, Y)$ into $\mathcal{B}\left(Y^{*}, X^{*}\right)$.
Remark 2.11. We have $\widehat{T x}=T^{* *} \hat{x}$. In fact, let $x \in X, g \in Y^{*}$,

$$
\begin{align*}
<g, \widehat{T x}> & =<T x, g> \tag{2.35}\\
& =<x, T^{*} g> \tag{2.36}\\
& =<T^{*} g, \hat{x}> \tag{2.37}\\
& =<g, T^{* *} \hat{x}>. \tag{2.38}
\end{align*}
$$

Hence the following diagram commutes,

where π denotes the canonical embedding.
Theorem 2.7. If X^{*} is separable, then so is X.
Proof. Let $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ be a dense subset of $S_{X^{*}}$, then for each n, we can pick an $x_{n} \in B_{X}$ such that $x_{n}^{*}\left(x_{n}\right)>\frac{1}{2}$. Let $Y=\overline{\operatorname{span}}\left\{x_{n}\right\}_{n \in \mathbb{N}}$, we claim that $Y=X$. Suppose not, take $x_{0} \in X \backslash Y$. Since Y is closed, $d\left(x_{0}, Y\right)>0$. Let $Z=\operatorname{span}\left(Y \cup\left\{x_{0}\right\}\right)$. Define $g: Z \rightarrow$ scalar by

$$
\begin{equation*}
g\left(y+\lambda x_{0}\right)=\lambda d\left(x_{0}, Y\right) \tag{2.39}
\end{equation*}
$$

for scalar λ and $y \in Y$. Observe that

$$
\begin{equation*}
\left|g\left(y+\lambda x_{0}\right)\right|=|\lambda| d\left(x_{0}, Y\right) \leq|\lambda| \cdot\left\|\frac{y}{\lambda}+x_{0}\right\|=\left\|y+\lambda x_{0}\right\| \tag{2.40}
\end{equation*}
$$

for $y \in Y$ and $\lambda \neq 0$. Hence $g \in Z^{*}$ with $\|g\| \leq 1$. Let $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in Y such that $\lim _{n \rightarrow \infty}\left\|y_{n}+x_{0}\right\|=d\left(x_{0}, Y\right)$, then it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g\left(y_{n}+x_{0}\right)}{\left\|y_{n}+x_{0}\right\|}=1 \tag{2.41}
\end{equation*}
$$

and therefore $\|g\|=1$. By Theorem 2.5 , there exists $f \in X^{*}$ such that $\left.f\right|_{Z}=g$ and $\|f\|=1$. Now we can find an n such that $\left\|f-x_{n}^{*}\right\|<\frac{1}{100}$, but then

$$
\begin{equation*}
\frac{1}{2}<\left|x_{n}^{*}\left(x_{n}\right)\right|=\left|\left(x_{n}^{*}-f\right)\left(x_{n}\right)\right|<\frac{1}{100} \tag{2.42}
\end{equation*}
$$

which yields a contradiction.
Remark 2.12. The converse is false. For example, ℓ_{1} is separable but ℓ_{∞} is not.
Theorem 2.8. Every separable Banach space X is isometrically isomorphic to a subspace of ℓ_{∞}, i.e. $X \hookrightarrow \ell_{\infty}$.
Proof. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a dense subset in X. For each n, pick an x_{n}^{*} in $S_{X^{*}}$ such that $x_{n}^{*}\left(x_{n}\right)=\left\|x_{n}\right\|$ (WLOS assume $X \neq\{0\}$). Define $T: X \rightarrow \ell_{\infty}$ by

$$
\begin{equation*}
T(x)=\left(x_{n}^{*}(x)\right)_{n=1}^{\infty} \tag{2.43}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left|x_{n}^{*}(x)\right| \leq\left\|x_{n}^{*}\right\| \cdot\|x\| \leq\|x\|, \quad \forall n \in \mathbb{N} \tag{2.44}
\end{equation*}
$$

$T x \in \ell_{\infty}$ and $\|T x\|_{\infty} \leq\|x\|$. Clearly, T is linear. Given $x \in X$. We can find an sequence $\left\{x_{n_{k}}\right\}_{n \in \mathbb{N}}$ such that $x_{n_{k}} \rightarrow x$. Observe that

$$
\begin{equation*}
\left\|x_{n_{k}}^{*}(x)\right\| \geq\left\|x_{n_{k}}\right\|-\left\|x_{n_{k}}^{*}\left(x-x_{n_{k}}\right)\right\| \geq\left\|x_{n}\right\|-2\left\|x-x_{n}\right\| . \tag{2.45}
\end{equation*}
$$

Letting $n_{k} \rightarrow \infty$, we can find an n_{j} such that $\left\|x_{n_{j}}\right\| \geq\|x\|-\epsilon$ for any given $\epsilon>0$. Taking supremum over n, we get $\|T x\|_{\infty} \geq\|x\|$.

Remark 2.13. Let \mathcal{S} be the class of all separable Banach spaces, then ℓ_{∞} is isometrically universal for \mathcal{S}. Note that $\ell_{\infty} \notin \mathcal{S}$. Question: does there exist a universal $Z \in \mathcal{S}$ for \mathcal{S}. The answer is yes and we will see it later.

Remark 2.14. Let $\mathcal{S R}$ be the class of separable reflexive spaces. Question: does there exist a universal $Z \in \mathcal{S R}$ for $\mathcal{S R}$. The answer is no, and it turns out to be much harder.

Theorem 2.9 (Vector-valued Liouville theorem). Let X be a complex Banach space, and $f: \mathbb{C} \rightarrow X$ is an analytic and bounded function. Then f is constant.

Proof. Note: f is analytic means that $\lim _{z \rightarrow w} \frac{f(z)-f(w)}{z-w}$ exists for all $w \in \mathbb{C}$. f is bounded means that there exists $M>0$ such that $\|f(z)\| \leq M$ for all $z \in \mathbb{C}$.
Now we return to the proof of the theorem. Let $\phi \in X^{*}$, and consider the function $\phi \circ f: \mathbb{C} \rightarrow \mathbb{C}$. Since ϕ is continuous and linear, the limit of

$$
\begin{equation*}
\frac{\phi(f(z))-\phi(f(w))}{z-w} \tag{2.46}
\end{equation*}
$$

exists and equals to $\phi\left(f^{\prime}(w)\right)$. Hence $\phi \circ f$ is analytic on \mathbb{C}. Also,

$$
\begin{equation*}
|\phi \circ f(z)| \leq\|\phi\| \cdot\|f(z)\| \leq M\|\phi\| \tag{2.47}
\end{equation*}
$$

for all $z \in \mathbb{C}$. By the scalar Liouville's theorem, $\phi \circ f$ is constant, so $\phi(f(z)-f(0))=0$ for all $z \in \mathbb{C}$ and $\phi \in X^{*}$. By Theorem 2.5, X^{*} separates the points of X, and therefore $f(z)-f(0)=0$ for all $z \in \mathbb{C}$.

2.4 Locally convex spaces

A locally convex space(LCS) is a real or complex vector space with a family \mathcal{P} of seminorms on X (be a pair (X, \mathcal{P})) that separates the points of X in the sense that for every $x \in X$ with $x \neq 0$, there is a seminorm $p \in \mathcal{P}$ with $p(x) \neq 0$.
The family \mathcal{P} defines a topology on X : a set $U \subset X$ is open if and only if for all $x \in U$, there exist $n \in \mathbb{N}, p_{1}, \cdots, p_{n} \in \mathcal{P}$, and $\epsilon>0$ such that

$$
\begin{equation*}
\left\{y \in X: p_{k}(y-x)<\epsilon(k=1, \cdots, n)\right\} \subset U . \tag{2.48}
\end{equation*}
$$

An alternative definition is $\bigcap\left\{p^{-1}(0): p \in \mathcal{P}\right\}=\{0\}$.
Remark 2.15. Addition and scalar multiplication is continuous.
Remark 2.16. The topology of X is Hausdorff as \mathcal{P} separates the points of X.
Remark 2.17. If $Y \subset X$ is a subspace, then $\mathcal{P}_{Y}=\left\{\left.p\right|_{Y}: p \in \mathcal{P}\right\}$ is a family of seminorms on Y. The topology of LCS $\left(Y, \mathcal{P}_{Y}\right)$ is the subspace topology on Y induced by X.

Remark 2.18. A sequence $x_{n} \rightarrow x$ in X if and only if $p\left(x_{n}\right) \rightarrow p(x)$ for all $p \in \mathcal{P}$. (The same holds for nets.)

Remark 2.19. Let \mathcal{P} and \mathcal{Q} be two families of seminorms on X, both of which separate the points of X. We say \mathcal{P} and \mathcal{Q} are equivalent if they induce the same topology, and we write $\mathcal{P} \sim \mathcal{Q}$ in this case.

The topology of a locally convex space (X, \mathcal{P}) is metrizable if and only if there exist countable \mathcal{Q} with $\mathcal{Q} \sim \mathcal{P}$.

Definition 2.4. A Fréchet space is a complete metrizable locally convex space. In particular, all Banach spaces are Fréchet spaces.

Example 2.4. Every normed space $(X,\|\cdot\|)$ is a LCS with $\mathcal{P}=\{\|\cdot\|\}$.
Example 2.5. Let U be a non-empty, open subset of \mathbb{C}, and let $\mathcal{O}(U)$ denote the space of analytic functions $f: U \rightarrow C$. For a compact subset $K \subset U$ and $f \in \mathcal{O}(U)$, set $p_{K}(f)=\sup _{z \in K}|f(z)|$ and $\mathcal{P}=\left\{p_{K}: K \subset U\right.$, and K compact $\}$. Then $(\mathcal{O}, \mathcal{P})$ is a locally convex space whose topology is the topology of local uniform convergence.
There exists compact sets $K_{n} \subset U, n \in \mathbb{N}$, such that $K_{n} \subset \operatorname{int}\left(K_{n+1}\right)$ and $U=\bigcup_{n} K_{n}$. Then $\left\{p_{K_{n}}: n \in \mathbb{N}\right\}$ is countable and equivalent to \mathcal{P}. Hence $(\mathcal{O}, \mathcal{P})$ is metrizable and in fact it is a Fréchet space.
The topology of local uniform convergence is not normable because it cannot be induced by a norm. This follows, for example, from Montel's theorem : given a sequence $\left\{f_{n}\right\}$ in $\mathcal{O}(U)$ such that $\left\{f_{K}\right\}$ is bounded in $(C(K),\|\cdot\|)$ for every compact $K \subset U$, there is a subsequence converges locally uniformly.

Theorem 2.10 (Montel's theorem). If $\left\{f_{n}\right\} \subset \mathcal{O}(U)$ is uniformly bounded on compact sets, then there exists a subsequence of $\left\{f_{n}\right\}$ converges locally uniformly.

3 Risez Representation theorem

Letting K be a compact and Hausdorff space, then

$$
\begin{equation*}
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} \tag{3.1}
\end{equation*}
$$

is a complex Banach space with the sup norm

$$
\begin{equation*}
\|f\|=\|f\|_{\infty}=\sup \{|f(x)|: x \in K\} . \tag{3.2}
\end{equation*}
$$

Define

$$
\begin{equation*}
C^{\mathbb{R}}(k)=\{f: K \rightarrow \mathbb{R}: f \text { is continuous }\} \tag{3.3}
\end{equation*}
$$

which is a real Banach space. Similarly, we define

$$
\begin{equation*}
C^{+}(K) *=\left\{f \in C^{\mathbb{R}}(K): f(x) \geq 0, \forall x \in K\right\} \tag{3.4}
\end{equation*}
$$

Next, we consider the dual spaces related to the previous spaces. Define $M(K)$ to be the dual of $C(K)$

$$
\begin{equation*}
M(K)=C(K)^{*}=\mathcal{B}(C(K), \mathbb{C}) \tag{3.5}
\end{equation*}
$$

If $\phi \in M(K)$, we have the usual operator norm

$$
\begin{equation*}
\|\phi\|=\sup \{|\phi(f)|: f \in C(K),\|f\| \leq 1\} \tag{3.6}
\end{equation*}
$$

Similarly, we define

$$
\begin{align*}
& M^{\mathbb{R}}(K)=\left\{\phi \in M(K): \phi(f) \in \mathbb{R}, \forall f \in C^{\mathbb{R}}(K)\right\} \tag{3.7}\\
& M^{+}(K)=\left\{\phi: C(K) \rightarrow \mathbb{C}: \phi \text { is linear, and } \phi(f) \geq 0, \forall f \in C^{+}(K)\right\} \tag{3.8}
\end{align*}
$$

The elements of $M^{+}(K)$ are called positive linear functionals.

3.1 Risez representation theorem

Theorem 3.1 (Risez representation). For every $\phi \in M^{+}(K)$, there exists a unique finite Borel measure μ such that

$$
\begin{equation*}
\phi(f)=\int_{K} f d \mu, \quad \forall f \in C(K) \tag{3.9}
\end{equation*}
$$

$3.2 \quad L^{p}$ spaces

Let $(\Omega, \mathscr{F}, \mu)$ be a measure space. Fix $1 \leq p<\infty . L^{p}(\Omega, \mathscr{F}, \mu)$ or L^{p} is the real or complex vector space of measurable functions $f: \Omega \rightarrow \mathbb{R}($ or $\mathbb{C})$ such that

$$
\begin{equation*}
\int_{\Omega}|f|^{p} d \mu \leq \infty \tag{3.10}
\end{equation*}
$$

L^{p} is a normed space with the norm

$$
\begin{equation*}
\|f\|_{p}=\left(\int_{\Omega}|f|^{p} d \mu\right)^{\frac{1}{p}} \tag{3.11}
\end{equation*}
$$

provided we identify f, g if $f=g$ a.e. on Ω, i.e. $N=\{x \in \Omega: f(x)=g(x)\}$ is a null set $(\mu(N)=0) . \mathrm{t} L^{p}(\Omega, \mathscr{F}, \mu)$ is complete, where $1 \leq p \leq \infty$.
$\|\cdot\|_{p}$ is a seminorm on L^{p}. If $\|\cdot\|$ is a seminorm on a vector space X, then $N=\{x \in X$: $\|x\|=0\}$ is a subspace. Then $\|x+N\|=\|x\|$ defines a norm on X / N.

The case $p=\infty \quad L^{\infty}$ is the space of essentially bounded measurable scalar-valued functions f on Ω, i.e. there exists a null set $N \subset \sigma$ such that f is bounded on $\Omega \backslash N$, and we define

$$
\begin{equation*}
\|f\|_{\infty}=\operatorname{ess} \sup |f|=\inf \left\{\sup _{\Omega \backslash N}|f|: N \subset \Omega, N \subset \Omega \text { is a null set }\right\} . \tag{3.12}
\end{equation*}
$$

With this norm, L^{∞} becomes a normed space.
Theorem 3.2. $L^{p}(\Omega, \mathcal{F}, \mu), 1 \leq p \leq \infty$ is complete.
Proof. 1) $1 \leq p<\infty$.

Let $\left\{f_{n}\right\}$ be a sequence in L^{p} such that $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{p}<\infty$. We will show that $\sum_{i=1}^{\infty} f_{k}$ converges in L^{p}. Define $S_{n}=\sum_{k=1}^{n}\left|f_{k}\right|$. Let $S=\sum_{k=1}^{\infty}\left|f_{k}\right|$, notice that this may take the value ∞. Suppose that $S=\infty$ on some $A \subset \mathcal{F}$ with $\mu(A)>0$. Fix $L>0$, then $S_{n}^{p} \wedge L \nearrow L$ on A. By the monotone convergence theorem,

$$
\begin{equation*}
\int_{A}\left(S_{n}^{p} \wedge L\right) d \mu \rightarrow \int_{A} L=\mu(A) L \tag{3.13}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|S_{n}\right\|_{p} \leq \sum_{k=1}^{n}\left\|f_{k}\right\|_{p}=\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p} \stackrel{\text { def }}{=} M \tag{3.14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{A}\left(S_{n}^{p} \wedge L\right) d \mu \leq\left\|S_{n}\right\|_{p}^{p} \leq M^{p} \tag{3.15}
\end{equation*}
$$

for all n, which implies that $\mu(A) L \leq M^{p}$ for all L. We have a contradiction.
Hence $S<\infty$ a.e. (WLOS, suppose $S<\infty$ everywhere). Now $S_{n}^{p} \nearrow S^{p}$, by the monotone convergence theorem

$$
\begin{equation*}
\int S^{p}=\lim \int S_{n}^{p} \leq M^{p} \tag{3.16}
\end{equation*}
$$

so $S^{p} \in L^{1}$.
Since $S<\infty$ on Ω, we can define $f=\sum_{k=1}^{\infty}$. Since $\left|\sum_{k=1}^{n} f_{k}-f\right|^{p} \rightarrow 0$ and $\left|\sum_{k=1}^{n} f_{k}-f\right|^{p} \leq$ $2 S^{p} \in L^{1}$, by the dominate convergence theorem,

$$
\begin{equation*}
\int_{\Omega}\left|\sum_{k=1}^{n} f_{k}-f\right|^{p} d \mu \rightarrow 0 \tag{3.17}
\end{equation*}
$$

as $n \rightarrow \infty$. So $f \in L^{p}$ and $\sum_{k=1}^{n} \rightarrow f$ in L^{p}.

4 Weak Topologies

4.1 General weak topologies

Let X be a set, \mathscr{F} be a family of functions such that for all $f \in \mathscr{F}, f$ is a function from X to Y_{f}, where each Y_{f} is a topological space.

Definition 4.1. The weak topology on X generated by \mathscr{F}, denoted by $\sigma(X, \mathscr{F})$, is the smallest topology on X which makes each $f \in \mathscr{F}$ be continues.

Remark 4.1. A sub-base for $\sigma(X, \mathscr{F})$ is

$$
\begin{equation*}
S=\left\{f^{-1}(U): f \in \mathscr{F}, \text { and } U \text { is open in } Y_{f}\right\} \tag{4.1}
\end{equation*}
$$

that is, $\sigma(X, \mathscr{F})$ consists of arbitrary unions of finite intersections of elements of S. More generally, if S_{f} is a sub-base for the topology of Y_{f}, then $\left\{f^{-1}(U): f \in \mathscr{F}, U \in S_{f}\right\}$ is also a sub-base for $\sigma(X, \mathscr{F})$.

Remark 4.2. $V \subset X$ is open $(V \in \sigma(X, \mathscr{F}))$ means that for every $x \in V$, there exist $n \in \mathbb{N}$, $f_{1}, f_{2}, \cdots, f_{n} \in \mathscr{F}$, and open sets U_{i} in $Y_{f_{i}}$ for $i=1, \cdots, n$, such that $x \in \bigcap_{i=1}^{n} f_{i}^{-1}\left(U_{i}\right)$. This is equivalent to for every $x \in V$, there exist $n \in \mathbb{N}, f_{1}, f_{2}, \cdots, f_{n} \in \mathscr{F}$, and open neighborhoods U_{i} of $f_{i}(x)$ in $Y_{f_{i}}$ for $i=1, \cdots, n$, such that

$$
\begin{equation*}
\left\{y \in X: f_{i}(y) \in U_{i}, i=1, \cdots, n\right\} \subset V \tag{4.2}
\end{equation*}
$$

Remark 4.3 (Universality Property). If Z is a topological space, then $g: Z \rightarrow X$ is continuous if and only if $g^{-1}\left(f^{-1}(U)\right)$ is open in Z, for any $f \in \mathscr{F}$ and U is open in Y_{f}, which is equivalent to say $f \circ g: Z \rightarrow Y_{f}$ is continuous for any $f \in \mathscr{F}$.

Exercise 4.1. Show that if τ is a topology on X such that for any Z and $g: Z \rightarrow X$, g is continuous with respect to $\tau \Leftrightarrow f \circ g: Z \rightarrow Y_{f}$ is continuous for any $f \in \mathscr{F}$, then $\tau=\sigma(X, \mathscr{F})$.

Remark 4.4. If Y_{f} is Hausdorff for any $y \in \mathscr{F}$, and \mathscr{F} separates the points of X (for any $x \neq y$, there exists a f such that $f(x) \neq f(y))$, then $\sigma(X, \mathscr{F})$ is Hausdorff.

Example 4.1 (subspace topology). Let X be a topological space, $Y \subset X$ is a subspace, and $i: X \rightarrow Y$ be the inclusion map. Let τ be the topology of X, then $\sigma(Y,\{i\})$ is the subspace topology of Y, which is denoted by $\left.\tau\right|_{Y}$.

Example 4.2 (product topology). Let $X_{\gamma}, \gamma \in \Gamma$ be a family of topological spaces. Let $X=\prod_{\gamma \in \Gamma} X_{\gamma}=\left\{x: x\right.$ is a function on Γ such that $\left.x(\gamma)=x_{\gamma} \in X_{\gamma}, \forall \gamma \in \Gamma\right\} . X$ is the set of " Γ-tuples" $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma}$. We have the projections $\pi_{\delta}: X \rightarrow X_{\delta}(\delta \in \Gamma)$, where $\pi_{\delta}(x)=x(\delta)=x_{\delta}$ for all $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma}$.
The product topology on X is $\sigma\left(X,\left\{\pi_{\gamma}: \gamma \in \Gamma\right\}\right)$. $V \subset X$ is open means that for every $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in V$, there exist $n \in \mathbb{N}, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{n} \in \Gamma$, and open neighborhoods U_{i} of $x_{\gamma_{i}}$ in $X_{\gamma_{i}}$ for $i=1, \cdots, n$, such that

$$
\begin{equation*}
\left\{y=\left(y_{\gamma}\right)_{\gamma \in \Gamma} \in X: y_{\gamma_{i}} \in U_{i}, i=1, \cdots, n\right\} \subset V \tag{4.3}
\end{equation*}
$$

Proposition 4.1. For each $n \in \mathbb{N}$, let $\left(Y_{n}, d_{n}\right)$ be a metric space. Let X be a set, $f_{n}: X \rightarrow Y_{n}$ be functions that separate the points of X, then $\sigma\left(X,\left\{f_{n} \mid n \in \mathbb{N}\right\}\right)$ is metrizable.

Proof. If d is a metric, then so is $\frac{d}{d+1}$ which is equivalent to d. Without loss of generality, let's assume $d_{n} \leq 1$ for every $n \in \mathbb{N}$. Then define

$$
\begin{equation*}
d(x, y)=\sum_{n=1}^{\infty} 2^{-n} d_{n}\left(f_{n}(x), f_{n}(y)\right) \tag{4.4}
\end{equation*}
$$

which is a metric on X. We need show the topology generated by d is equivalent to $\sigma\left(X,\left\{f_{n} \mid n \in \mathbb{N}\right\}\right)$. First assume $d\left(x, x_{k}\right)$ as $k \rightarrow \infty$, then $2^{-n} d_{n}\left(f_{n}(x), f_{n}\left(x_{k}\right)\right) \leq d\left(x, x_{k}\right)$ for every $n \geq 1$ Id: $(X, d) \rightarrow \sigma\left(X,\left\{f_{n} \mid n \in \mathbb{N}\right\}\right)$ is continues. (use the universality property) Id: $\sigma\left(X,\left\{f_{n} \mid n \in \mathbb{N}\right\}\right) \rightarrow(X, d)$ is also continues. (by direct argument)

Theorem 4.2 (Tychonov). The product of compact spaces is compact in product topology.

4.2 Weak topologies on vector spaces

Let E be a real or complex vector space. Let F be a vector space of linear functionals on E such that separates the points of E (for every $x \neq 0$ in E, there exist an $f \in F$ such that $f(x) \neq 0)$. We consider the weak topology $\sigma(E, F)$ on $E . U \subset E$ is open \Leftrightarrow for every $x \in U$, there exist $n \in \mathbb{N}, f_{1}, \cdots, f_{n} \in F, \epsilon>0$, such that

$$
\begin{equation*}
\left\{y \in E:\left|f_{i}(x)-f_{i}(y)\right|<\epsilon, i=1, \cdots, n\right\} \subset U . \tag{4.5}
\end{equation*}
$$

Remark 4.5. $(E, \sigma(E, F))$ is a locally convex space with defining seminorms: $x \rightarrow|f(x)|$ for $x \in E$ and $f \in F$.

Note. $(E, \sigma(E, F))$ is Hausdorff, and its addition and scalar multiplication are continuous.
Lemma 4.3. Let E be as above, and let f, g_{1}, \cdots, g_{n} be linear functionals on E. If ker $f \supset$ $\bigcap_{i=1}^{n} \operatorname{ker} g_{i}$, then $f \in \operatorname{Span}\left\{g_{1}, \cdots, g_{n}\right\}$.

Proof. Define $g(x)=\left(g_{1}(x), g_{2}(x), \cdots, g_{n}(x)\right)$, with $\operatorname{ker} g \subset$ ker f and $x \in E$. Then there exists a unique linear functional $\tilde{f}: g(E) \rightarrow \mathbb{R}$ such that $\tilde{f} \circ g=f$. Extend \tilde{f} to the whole \mathbb{R}^{n}, then we can find a $b=\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{R}^{n}$ such that $\tilde{f}\left(\left(a_{1}, \cdots, a_{n}\right)\right)=\sum_{i=1}^{n} a_{i} b_{i}$. So $f(x)=\tilde{f} \circ g(x)=\sum_{i=1}^{n} b_{i} g_{i}(x)$, and f is therefore in the span of g_{i} 's.

Proposition 4.4. Let E, F be as above, then a linear functional $f: E \rightarrow \mathbb{R}$ is $\sigma(E, F)$ continuous if and only if $f \in F$, i.e. $(E, \sigma(E, F))^{*}=F$.

Proof. (\Leftarrow) By definition.
(\Rightarrow) Suppose $f: E \rightarrow \mathbb{R}$ is continuous in the $\sigma(E, F)$ topology. There exists an open neighborhood U of 0 in E such that $|f(x)|<1$ for all $x \in U$. WLOG, let

$$
\begin{equation*}
U=\{x \in E:|g(x)|<\epsilon, i=1, \cdots, n\} \tag{4.6}
\end{equation*}
$$

for some $n \in \mathbb{N}, g_{1}, \cdots, g_{n} \in F$, and $\epsilon>0$. Now if $x \in \bigcap_{i=1}^{n} \operatorname{ker} g_{i}$, then $\lambda x \in U$ for any scalars. Hence

$$
\begin{equation*}
|f(\lambda x)|=|\lambda||f(x)|<1 \tag{4.7}
\end{equation*}
$$

for any scalar λ, which implies that $f(x)=0$. Then $\bigcap_{i=1}^{n} \operatorname{ker} g_{i} \subset \operatorname{ker} f$, by previous lemma we have $f \in \operatorname{span}\left\{g_{1}, \cdots, g_{n}\right\} \subset F$.

Recall that we always identify the image of a normed space X under the canonical embedding $X \rightarrow X^{* *}$ with X.

$$
X \hookrightarrow X^{* *}
$$

Let X be a normed space.

Definition 4.2. Let $E=X, F=X^{*}$. Notice that by Hahn Banach theorem, X^{*} separates the points in X. Then $\sigma\left(X, X^{*}\right)$ is the weak topology of X. We write (X, w) for $\left(X, \sigma\left(X, X^{*}\right)\right)$. Then $U \subset X$ is weakly open (or w-open), i.e. $U \in \sigma\left(X, X^{*}\right) \Longleftrightarrow \forall x \in U, \exists \epsilon>0, \exists n \in$ $\mathbb{N}, \exists x_{1}^{*}, \cdots, x_{n}^{*} \in X^{*}$ such that

$$
\begin{equation*}
\left\{y \in X:\left|x_{i}^{*}(y)-x_{i}^{*}(x)\right|<\epsilon, i=1, \cdots, n\right\} \subset U . \tag{4.8}
\end{equation*}
$$

Definition 4.3. Let $E=X^{*}, F=X \hookrightarrow X^{* *}$. Then $\sigma\left(X^{*}, X\right)$ is the weak-star topology of X^{*}. We write $\left(X^{*}, w^{*}\right)$ for $\left(X^{*}, \sigma\left(X^{*}, X\right)\right.$). Then $U \subset X$ is weak-* open (or w*-open), i.e. $U \in \sigma\left(X^{*}, X\right) \Longleftrightarrow \forall x^{*} \in U, \exists \epsilon>0, \exists n \in \mathbb{N}, \exists x_{1}, \cdots, x_{n} \in X$ such that

$$
\begin{equation*}
\left\{y^{*} \in X^{*}:\left|y^{*}\left(x_{i}\right)-x^{*}\left(x_{i}\right)\right|<\epsilon, i=1, \cdots, n\right\} \subset U . \tag{4.9}
\end{equation*}
$$

Hence last proposition directly gives
Proposition 4.5. A linear functional $f: X \rightarrow \mathbb{R}$ is w-continuous $\Leftrightarrow f \in X^{*}$. Similarly $g: X^{*} \rightarrow \mathbb{R}$ is w^{*}-continuous $\Leftrightarrow g \in X$. i.e. $(X, w)^{*}=X^{*},\left(X^{*}, w^{*}\right)^{*}=X$.

It follows that $\sigma\left(X^{*}, X^{* *}\right)=\sigma\left(X^{*}, X\right)$ if and only if X is reflexive.

Properties

- (X, w) and $\left(X^{*}, w^{*}\right)$ are locally convex spaces, hence Hausdorff. In addition, the scalar multiplications are continuous.
- $\sigma\left(X, X^{*}\right) \subset\|\cdot\|$ topology, i.e. the weak topology of X is a subset of the topology on X induced by norm. Similarly we have $\sigma\left(X^{*}, X\right) \subset \sigma\left(X^{*}, X^{* *}\right) \subset\|\cdot\|$ topology (on X^{*}).
- If $\operatorname{dim} X<\infty$, then all these topologies coincide.
- If $\operatorname{dim} X=\infty$, and U is a w-open neighborhood of 0 , then U is not bounded in norm. Hence $\sigma\left(X, X^{*}\right) \subsetneq\|\cdot\|$ topology. Moreover, (X, w) is not metrizable (not even first countable).
- If $\operatorname{dim} x$ is uncountable (e.g. X is complete and $\operatorname{dim} x=\infty$), then $\left(X^{*}, w^{*}\right)$ is not metrizable (not even first countable).
- Let Y be a subspace of X, then $\left.\sigma\left(X, X^{*}\right)\right|_{Y}=\sigma\left(Y, Y^{*}\right)$ (by Hahn Banach). Similarly $\left.\sigma\left(X^{* *}, X^{*}\right)\right|_{X}=\sigma\left(X, X^{*}\right)$. So the canonical embedding $X \rightarrow X^{* *}$ is a weak-to-weak-* homeomorphism into $X^{* *}$.

4.3 Weak and weak-* convergence

In $X, x_{n} \xrightarrow{w} x$ means that $\left\{x_{n}\right\}$ converges weakly (i.e. in the weak topology) to x. This is equivalent to

$$
\begin{equation*}
<x_{n}, x^{*}>\longrightarrow<x, x^{*}> \tag{4.10}
\end{equation*}
$$

for any $x^{*} \in X^{*}$.

Similarly in $X^{*}, x_{n}^{*} \xrightarrow{w^{*}} x^{*}$ means that $\left\{x_{n}^{*}\right\}$ converges w-* (i.e. in the weak-star topology) to x^{*}. This is equivalent to

$$
\begin{equation*}
<x, x_{n}^{*}>\longrightarrow<x, x^{*}> \tag{4.11}
\end{equation*}
$$

for all $x \in X$.
Definition 4.4. $B \subset X^{*}$ is said to be weakly bounded if $\left\{x^{*}(x): x^{*} \in B\right\}$ is bounded $\forall x \in X$.

Remark 4.6. The principle of uniform boundedness (PUB) says that:
let X be a Banach space, Y be a normed space, and $\mathcal{T} \in \mathcal{B}(X, Y)$ be a collection of linear maps which is also pointwise bounded (i.e. $\sup _{T \in \mathcal{T}}\|T(x)\|<\infty$ for any $x \in X$). Then \mathcal{T} is uniformly bounded, that is, $\sup _{T \in \mathcal{T}}\|T\|<\infty$.

Proposition 4.6.

- Let X be a normed space, and $A \subset X$ be weakly bounded, then A is norm-bounded.
- Let X be a Banach space, and $B \subset X^{*}$ be weak-* bounded, then B is norm-bounded.

Proof. i) Since $A \subset X \subset X^{* *}=\mathcal{B}\left(X^{*}, \mathbb{R}\right), A$ is weakly bounded is equivalent to A is pointwise bounded. In addition, X^{*} is complete. Hence the result follows from PUB.
ii) Notice $B \subset X^{*}=\mathcal{B}(X, \mathbb{R})$ which means that B is w-* bounded $\leftrightarrow B$ is pointwise bounded. Since X is complete, we can apply PUB again.

Proposition 4.7.

- Let X be a normed space. If $x_{n} \xrightarrow{w} x$, then $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty$ and $\|x\| \leq \lim \inf \left\|x_{n}\right\|$.
- Let X be a Banach space. If $x_{n}^{*} \xrightarrow{w^{*}} x^{*}$, then $\sup _{n \in \mathbb{N}}\left\|x_{n}^{*}\right\|<\infty$ and $\left\|x^{*}\right\| \leq \lim \inf \left\|x_{n}^{*}\right\|$.

Proof. i) Since $x^{*}\left(x_{n}\right) \rightarrow x *(x)$ for every $x^{*} \in X^{*},\left\{x^{*}\left(x_{n}\right): n \in \mathbb{N}\right\}$ is bounded. Hence $\sup _{n \in \mathbb{N}}\left\|x^{*}\left(x_{n}\right)\right\|<\infty$ and the result follows from the previous proposition.

$$
\begin{equation*}
\left|x^{*}(x)\right|=\liminf _{n \rightarrow \infty}\left|x^{*}\left(x_{n}\right)\right| \leq \liminf _{n \rightarrow \infty}\left\|x^{*}\right\| \cdot\left\|x_{n}\right\| \tag{4.12}
\end{equation*}
$$

Pick $x^{*} \in X^{*}$ such that $\left\|x^{*}\right\|=1$ and $x^{*}(x)=\|x\|$. We obtain that $\|x\| \leq \lim \inf \left\|x_{n}\right\|$.
ii) Similar to i).

4.4 Hahn Banach separation theorem

Let (X, \mathcal{P}) be a locally convex space. Suppose C is a convex subset of X with $0 \in$ int C. We define $\mu_{C}: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mu_{C}=\inf \{t>0: x \in t C\} . \tag{4.13}
\end{equation*}
$$

For $x \in X, 0 \cdot x=0 \in \operatorname{int} C$, then by the continuity of scalar multiplication, there exists some $\delta>0$ such that for any scalar λ such that $|\lambda|<\delta$, we have $\lambda x \in C$. Therefore $x \in \frac{1}{\delta} C$. So μ_{C} is well-defined.

Example 4.3. Let X be a normed space, and $C=B_{x}$ is the unit ball. Then $\mu_{C}=\|\cdot\|$.
Lemma 4.8. μ_{C} is positive homogeneous and subadditive.

$$
\begin{equation*}
\left\{x \in X: \mu_{C}(x)<1\right\} \subset C \subset\left\{x \in X: \mu_{C}(x) \leq 1\right\} \tag{4.14}
\end{equation*}
$$

Furthermore, if C is open, then

$$
\begin{equation*}
C=\left\{x \in X: \mu_{C}(x)<1\right\} . \tag{4.15}
\end{equation*}
$$

Proof. From the definition, we get $\mu_{C}(t x)=t \mu_{C}(x), \forall x \in X, \forall t>0$. Also $\mu_{C}(0)=0$.
Now given $x, y \in X$, fix $s>\mu_{C}(x), t>\mu_{C}(y)$. So there exist $s^{\prime}<s$ such that $x \in s^{\prime} C$. Then

$$
\begin{equation*}
\frac{x}{s}=\frac{s^{\prime}}{s} \cdot \frac{x}{s^{\prime}}+\left(1-\frac{s^{\prime}}{s}\right) \cdot 0 \in C \tag{4.16}
\end{equation*}
$$

since C is convex. So $x \in s C$. Similarly, $y \in t C$. It follows that

$$
\begin{equation*}
\frac{s}{s+t} \cdot \frac{x}{s}+\frac{t}{s+t} \cdot \frac{y}{t}=\frac{x+y}{s+t} \in C . \tag{4.17}
\end{equation*}
$$

Hence $x+y \in(s+t) C$ and $\mu_{C}(x+y) \leq s+t$. Taking infimum over all s, t, we get $\mu_{C}(x+y) \leq \mu_{C}(x)+\mu_{C}(y)$.
For the second part, note that $\mu_{C}(x)<1 \Rightarrow x \in C$ is shown by above argument. $x \in C \Rightarrow$ $\mu_{C}(x)<1$ is by definition.
Finally, suppose C is open and $x \in C$, then $x \cdot 1 \in C$. By the continuity of scalar multiplication, there exists some $\delta>0$ such that $(1+\delta) x \in C$. Therefore, $\mu_{C}(x) \leq 1 /(1+\delta)<1$.

Remark 4.7. C is called symmetric if $x \in C$ implies $-x \in C . C$ is called balanced if $x \in C, \lambda \in \mathbb{C}$, and $|\lambda|=1$ implies $\lambda x \in C$. Note that in the case of real scalars, "balanced" $=$ "symmetric".

Remark 4.8. If U is a neighborhood of 0 , then there exists a convex and balanced neighborhood of 0 such that $V \subset U$. Indeed, there exist $n \in \mathbb{N}, p_{1}, \cdots, p_{n} \in \mathcal{P}$, and some $\epsilon>0$, such that

$$
\begin{equation*}
V=\left\{x \in X: p_{i}(x)<\epsilon, i=1, \cdots, n\right\} \subset U . \tag{4.18}
\end{equation*}
$$

Remark 4.9. If U is a neighborhood of 0 , then there exists a convex and balanced neighborhood of 0 such that $V+V \subset U$. By previous remark, we can assume V to be convex and balanced.

Theorem 4.9. (Hahn-Banach separation theorem) Let (X, \mathcal{P}) be a real or complex locally convex space. Let C be an open convex set in X such that $0 \in C$. Given $x_{0} \in X \backslash C$, there exists an $f \in X^{*}$ such that $f(x)<f\left(x_{0}\right)$ for all $x \in C$. (In complex case, $\Re f(x)<\Re f\left(x_{0}\right)$, $\forall x \in C$.)

Proof. i) (Real case) By previous lemma, we have a positive homogeneous and subadditive functional μ_{C}. We define $f: \operatorname{span}\left\{x_{0}\right\} \rightarrow \mathbb{R}$ by setting $f\left(t x_{0}\right)=t \mu_{C}\left(x_{0}\right)$. For $t \geq 0$

$$
\begin{equation*}
f\left(t x_{0}\right)=t \mu_{C}\left(x_{0}\right)=\mu_{C}\left(t x_{0}\right) . \tag{4.19}
\end{equation*}
$$

For $t<0$,

$$
\begin{equation*}
f\left(t x_{0}\right)=t \mu_{C}\left(x_{0}\right) \leq 0 \leq \mu_{C}\left(t x_{0}\right) . \tag{4.20}
\end{equation*}
$$

In $\operatorname{span}\left\{x_{0}\right\}, f$ is dominated by μ_{C}, so we can extend f to the whole X and is still dominated by μ_{C} (Hahn-Banach).
If $x \in C$, then $f(x) \leq \mu_{C}(x)<1 \leq \mu_{C}\left(x_{0}\right)=f\left(x_{0}\right)$ by using lemma 4.8. Since C is a neighborhood of 0 , there exists a symmetric neighborhood U of 0 such that $U \subset C$. For $x \in U, \pm x \in U \subset C$. Hence $\pm f(x)<1$, i.e. $|f(x)|<1$, which implies f is continuous at 0 , and so $f \in X^{*}$ by lemma 2.9.
ii) (Complex case) Consider X as a real vector space, by the first part there exists a real continuous linear functional g on X such that $g(x)<g\left(x_{0}\right)$ for any $x \in C$. Setting $f(x)=g(x)-i g(i x), x \in X$ and we have $\Re f=g$.

Remark 4.10. From now on, we only state and prove the real version since complex version follows similarly as in ii).

Theorem 4.10 (Hahn-Banach separation theorem). Let (X, \mathcal{P}) be a locally convex space. Let A, B be disjoint non-empty open convex sets of X.
i) If A is open, there exist $f \in x^{*}, \alpha \in \mathbb{R}$ such that $f(a)<\alpha \leq f(b), \forall a \in A, b \in B$.
ii) If A is compact, B is closed, then there exists an $f \in X^{*}$ such that $\sup _{A} f<\inf _{B} f$.

Proof. i) Fix $a_{0} \in A, b_{0} \in B$. Let $x_{0}=a_{0}-b_{0}, C=A-B+x_{0}=\bigcup_{b \in B}\left(A-b+x_{0}\right)$. Then C is an open convex set and $0 \in C$. Since $A \cap B=\emptyset$, we have $x_{0} \notin C$. Then by Theorem 4.9, we can find an $f \in X^{*}$ such that $f(x)<f\left(x_{0}\right) \forall x \in C$, i.e.

$$
\begin{equation*}
f\left(a-b+x_{0}\right)<f\left(x_{0}\right), \quad \forall a \in A, b \in B . \tag{4.21}
\end{equation*}
$$

So $f(a)<f(b)$ for all $a \in A$ and $b \in B$. It follows that $\alpha=\inf _{B} f$ exists. Since $f\left(a_{0}\right)<f\left(b_{0}\right)$, we have $f \neq 0$. Pick any $z \in X$ such that $f(z)>0$. Given any $a \in A$, as A is open, there exists a $\delta>0$ such that $(a+\delta z) \in A$. Hence, $f(a)<f(a+\delta z) \leq \alpha$.
ii) For any $a \in A$, there exists an open neighborhood U_{a} of 0 such that $\left(a+U_{a}\right) \cap B=\emptyset$ (since B is closed). There exists a balanced convex open neighborhood V_{a} of 0 such that $V_{a}+V_{a} \subset U_{a} .\left\{a+V_{a}\right\}_{a \in A}$ is an open cover for A, so there exists $a_{1}, \cdots, a_{n} \in A, n \in \mathbb{N}$ such that $A=\bigcup_{i=1}^{n}\left(a_{i}+V_{a_{j}}\right)$. Define $V=\bigcap_{i=1}^{n} V_{a_{i}}$ which is an balanced convex open neighborhood of 0 , and we have $(A+V) \cap B=\emptyset$. Let $a \in A$ be arbitrary, then there exists a j such that $a \in\left(a_{j}+V_{a_{j}}\right)$, so that $(a+V) \in\left(a_{j}+V_{a_{j}}+V\right) \subset\left(a_{j}+U_{a_{j}}\right)$ and $\left(a_{j}+U_{a_{j}}\right) \cap B=\emptyset$. Hence $A+V$ is an open convex set, and by i) there exist $f \in X^{*}, \beta \in \mathbb{R}$ such that $f(a+v)<\beta \leq f(b), \forall a \in A, v \in V$, and $b \in B$.
In particular, $f \neq 0$, so there exists a $z \in V$ such that $f(z)>0$. Hence $f(a)<\beta-f(z)$ for all $x \in A$. Therefore, $\alpha=\sup _{A} f<\beta$. (Or $f(a)<\beta, \forall a \in A$, and $\sup _{A} f$ is attained.)

Theorem 4.11 (Mazur). Let X be a normed space, and C be a convex set in X. Then C is weakly closed if and only if C is norm-closed. Hence for general convex sets C, we have $\bar{C}^{w}=\bar{C}^{\|\cdot\|}$.

Proof. (\Rightarrow) Clear.
(\Leftarrow) Let $x \in X \backslash C$. Apply theorem 4.10 ii) to $A=\{x\}, \mathrm{B}=\mathrm{C}$, and $\mathcal{P}=\|\cdot\|$. So there exists an $f \in x^{*}$ such that $f(x) \leq \inf _{C} f=\alpha .\{z \in X: f(z)<\alpha\}$ is a weakly open set containing x, which is disjoint from C. Thus $X \backslash C$ is weakly open and then C is weakly closed.

Corollary 4.12. If $x_{n} \xrightarrow{w} 0$ in a normed space X, then for any $\epsilon>0$, there exist $n \in \mathbb{N}$, $t_{i} \geq 0$ for $i=1, \cdots, N$, and $\sum_{i=1}^{N} t_{i}=1$, such that $\left\|\sum_{i=1}^{N} t_{i} x_{i}\right\|<\epsilon$.

Proof. Let $C=\operatorname{conv}\left\{x_{i}: i \in \mathbb{N}\right\}=\left\{\sum_{i=1}^{n} t_{i} x_{i}: n \in \mathbb{N}, t_{i} \geq 0, \forall \sum_{i=1}^{n} t_{i}=1\right\}$. As $x_{n} \xrightarrow{w} 0$, $0 \in \bar{C}^{w}=\bar{C}^{\|\cdot\|}$ by Theorem 4.11.

Theorem 4.13 (Banach-Alaoglu). In any normed space $X,\left(B_{X^{*}}, x^{*}\right)$ is compact.
Proof. For $x \in X$, let $K_{x}=\{\lambda:|\lambda| \leq\|x\|, \lambda$ is a scalar $\}$. Set $K=\prod_{x \in X} K_{x}$ with the product topology. This set is compact by Tychonov theorem. Note that

$$
\begin{equation*}
K=\{f: X \rightarrow \text { scalars : }|f(x)| \leq\|x\|\} . \tag{4.22}
\end{equation*}
$$

So $B_{X^{*}} \subset K$ and $B_{X^{*}}=\{f \in K: f$ is linear $\}$. The product topology on K is the smallest topology on K such that $\pi_{x}: K \rightarrow K_{x}$ is continuous for every $x \in X$. Note that $\pi_{x}(f)=f(x)$. The weak-* topology on X^{*} is the smallest topology on X^{*} such that $\left.\hat{x}\right|_{B_{X^{*}}}$ is continuous for every $x \in X$ (here we use the identification $X \xrightarrow{\wedge} X^{* *}$, with $\left.\hat{x}\right|_{B_{X^{*}}}=f(x)$. Hence $\left(B_{X^{*}}, w^{*}\right)$ is a subspace of K, and it suffices to show $B_{X^{*}}$ is closed in K. But

$$
\begin{align*}
B_{X^{*}} & =\{f \in K: f(\lambda x+\mu y)-\lambda f(x)-\mu f(y)=0, \forall x, y \in X, \lambda, \mu \text { are scalars }\} \tag{4.23}\\
& =\bigcap_{\substack{x, y \in X \\
\lambda, \mu \text { are scalars }}}\left\{f \in K:\left(\pi_{\lambda x+\mu y}-\pi_{\lambda}-\pi_{\mu}\right)(f)=0\right\} \tag{4.24}
\end{align*}
$$

which is clearly closed.
Proposition 4.14. Let X be a normed space, and K be a compact Hausdorff space, then

1. X is separable $\Leftrightarrow\left(B_{X^{*}}, w^{*}\right)$ is metrizable.
2. $C(K)$ is separable $\Leftrightarrow K$ is metrizable.

Proof. 1. (\Rightarrow) Choose a dense subset $\left\{x_{n}: n \in \mathbb{N}\right\} \subset X$. Let $\sigma=\sigma\left(B_{X^{*}},\left\{\left.\hat{x}\right|_{B_{X^{*}}}: n \in \mathbb{N}\right\}\right)$, which is the smallest topology on $B_{X^{*}}$ such that $x^{*} \mapsto x^{*}\left(x_{n}\right)$ is continuous for any $n \in \mathbb{N}$. So $\sigma \subset \mathrm{w}^{*}$ topology of $B_{X^{*}}$, which implies that the formal identity

$$
\begin{equation*}
i:\left(B_{X^{*}}, w^{*}\right) \rightarrow\left(B_{X^{*}}, \sigma\right) \tag{4.25}
\end{equation*}
$$

is continuous. Since $\left\{x_{n}: n \in \mathbb{N}\right\}$ is dense in X, they separate the points of $B_{X^{*}}$. By Proposition 4.1, $\left(B_{X^{*}}, \sigma\right)$ is metrizable. Moreover, i is a continuous bijection from a compact space to a Hausdorff space, hence it is a homeomorphism.
2. (\Rightarrow) Let $X=C(K)$ be separable, then by above result we see that $\left(B_{X^{*}}, w^{*}\right)$ is metrizable. Define $\delta: K \rightarrow\left(B_{X^{*}}, w^{*}\right)$ which maps k to δ_{k} for $k \in K$, where $\delta_{k}(f)=f(k)$ for $f \in C(K)$.
δ is continuous since $k \mapsto \delta_{k}(f)=f(k)$ is continuous for every $f \in C(K)$. Since K is compact and Hausdorff, it is also normal. By Uryson's lemma, for any $k \neq k^{\prime}$ in K, there exists an $f \in C(K)$ such that $f(k) \neq f\left(k^{\prime}\right)$, thus $\delta_{k} \neq \delta_{k}$ if $k \neq k^{\prime}$. Therefore, $\delta: K \rightarrow \delta(K)$ is a continuous bijection from a compact space to a Hausdorff space. Then we see that K is homeomorphic to its image in the metric space ($B_{X^{*}}, w^{*}$) which implies K is metrizable.
2. (\Leftarrow) Since K is a compact metric space, K is separable. Let $\left\{k_{n}: n \in \mathbb{N}\right\}$ be a dense set in X. Define $f_{0}=1, f_{n}(k)=d\left(k, k_{n}\right)$ for $k \in K$ and $n \geq 1$. Let A be the algebra generated by $f_{n}, n \geq 0$, that is,

$$
\begin{equation*}
A=\operatorname{span}\left\{\prod_{n \in F}: F \text { is a finite subset of }\{0,1,2, \cdots\}\right\} . \tag{4.26}
\end{equation*}
$$

Then A is separable, $1 \in A$, and A separates the points of $K: \forall k \neq k^{\prime} \in K, \exists n \in \mathbb{N}$ such that $d\left(k, k_{n}\right)<d\left(k^{\prime}, k_{n}\right)$. By Stone-Weierstrass theorem, $\bar{A}=C(K)$, which implies that $C(K)$ is separable.

1. (\Leftarrow) Let $K=\left(B_{X^{*}}, w^{*}\right)$, then by part $2, C(K)$ is separable. Consider $X \subset C(K)$ with the identification $\left.x \mapsto \hat{x}\right|_{K}$ defined by $\left.\hat{x}\right|_{K}\left(x^{*}\right)=x^{*}(x)$. This is well defined

$$
\begin{equation*}
\left\|\left.\hat{x}\right|_{K}\right\|_{\infty}=\sup \left\{\mid x^{*}(x): x^{*} \in B_{X^{*}}\right\}=\|x\| . \tag{4.27}
\end{equation*}
$$

by Hahn-Banach theorem. Hence X is separable.
Remark 4.11. X is separable $\Rightarrow X^{*}$ is w^{*} separable, and $X^{*}=\cup_{n=1}^{\infty} b B_{X^{*}}$. (" \Leftarrow is false in general, e.g. $X=l^{\infty} \prime$)

Remark 4.12. X is separable $\Rightarrow X$ is w-separable. (If $A \subset X$, then $\overline{\operatorname{span}} A=\overline{\operatorname{span}}^{w} A$) \supset $\left.\bar{A}^{w} \supset \bar{A}\right)$

Proposition 4.15. Let X be a normed space. X^{*} is separable if and only if $\left(B_{X}, w\right)$ is metrizable.

Proof. (\Rightarrow) By previous proposition, $\left(B_{X^{* *}}, w^{*}\right)=\left(B_{X^{* *}}, \sigma\left(X^{* *}, X^{*}\right)\right)$ is metrizable. Since $\left(B_{x}, w\right)$ is a subspace of $\left(B_{X^{* *}}, w^{*}\right)$, it is metrizable.
(\Leftarrow) Assume that $\left(B_{x}, w\right)$ is metrizable by metric d. For any weakly open neighborhood U of 0 , there exists an $n \in \mathbb{N}$ such that $B\left(0, \frac{1}{n}\right)=\left\{x \in B_{X}: d(x, 0)<\frac{1}{n}\right\} \subset U$. For every n, there exist a finite set $F_{n} \subset X^{*}, \epsilon_{n}>0$, such that $U_{n}=\left\{x \in B_{X}:\left|X^{*}(x)\right|<\epsilon_{n}, \forall x^{*} \in F_{n}\right\}$, and $U_{n} \subset B\left(0, \frac{1}{N}\right)$. Let $Z=\overline{\operatorname{span}} \cup_{n \in \mathbb{N}} F_{n}$, then Z is separable. We will show $Z=X^{*}$.
Suppose not, then there exists an $x^{*} \in B_{X^{*}}$ with $d\left(x^{*}, Z\right)=\inf _{z \in Z}\left\|x^{*}-z\right\|>1 / 2$. Then there exists an $n \in \mathbb{N}$ such that $U_{n} \subset\left\{x \in B_{X}:\left|x^{*}(x)\right|<1 / 10\right\}$ since $\left\{x \in B_{X}:\left|x^{*}(x)\right|<1 / 10\right\}$ is a weakly open neighborhood of 0 in B_{X}. Now let $Y=\cap_{y^{*} \in F_{n}}$ ker y^{*}. If $y \in B_{Y}$, then $y \in U_{n}$ since $\left|x^{*}(y)\right|<1 / 10$. So $\left\|\left.x^{*}\right|_{Y}\right\| \leq 1 / 10$. By Hahn-Banach theorem, there exists a $z^{*} \in X^{*}$ such that $\left\|z^{*}\right\| \leq 1 / 10$ and $\left.z *\right|_{Y}=\left.x^{*}\right|_{Y}$. Since

$$
\begin{equation*}
Y=\cap_{y^{*} \in F_{n}} \operatorname{ker} y^{*} \subset \operatorname{ker}\left(x^{*}-z^{*}\right) \tag{4.28}
\end{equation*}
$$

By lemma 4.3, $\left(x^{*}-z^{*}\right) \subset \operatorname{span}_{n \in \mathbb{N}} F_{n} \subset Z$. Thus, $d\left(x^{*}, Z\right) \leq 1 / 10$ which gives us a contradiction.

Proposition 4.16. Let X be a normed space, $K \subset X$ and (K, w) is compact. If X^{*} is $w^{*}{ }^{*}$ separable, then (K, w) is metrizable.

Note. If X is separable, then X^{*} is w-* separable.
Proof. Let A be a countable subset of X^{*} such that $\bar{A}^{\omega^{*}}=A^{*}$. Then A separates the points of X. By proposition 4.1, $\sigma=\sigma(K, A)$ is metrizable. Since $A \subset X^{*}$, the formal identity

$$
\begin{equation*}
(K, w) \rightarrow(K, \sigma) \tag{4.29}
\end{equation*}
$$

is a continuous bijection from a compact space to a Hausdorff space, hence is a homeomorphism.

Theorem 4.17 (Goldstein). Let X be a normed space, then ${\overline{B_{X}}}^{w^{*}}=B_{X^{* *}}$. Here we view B_{X} sitting inside $B_{X^{* *}}$.

Proof. Let $K={\overline{B_{X}}}^{w^{*}}$. Since $B_{X} \subset B_{X^{* *}}$ and $B_{X^{* *}}$ is $\mathrm{w}-*$ closed, we have $K \subset B_{X^{* *}}$. Suppose $K \neq B_{X^{* *}}$. Pick $x^{* *} \in B_{X^{* *}} \backslash K$. It is easy to check that K is compact. By theorem 4.10 (ii), there exists a w-* continuous linear functional $x^{*} \in X^{*}$ such that

$$
\begin{equation*}
\sup _{z^{* *} \in K} z^{* *}\left(x^{*}\right)<x^{* *}\left(x^{*}\right) \tag{4.30}
\end{equation*}
$$

Since $K \supset B_{X}$,

$$
\begin{equation*}
\sup _{z^{* *} \in K} z^{* *}\left(x^{*}\right) \geq \sup _{z^{* *} \in B_{X}} x^{*}(x)=\left\|x^{*}\right\| . \tag{4.31}
\end{equation*}
$$

But

$$
\begin{equation*}
x^{* *}\left(x^{*}\right) \leq\left\|x^{* *}\right\| \cdot\left\|x^{*}\right\| \leq\left\|x^{*}\right\| \tag{4.32}
\end{equation*}
$$

which gives a contradiction.
Theorem 4.18. Let X be a Banach space, TFAE:

1. X is reflexive.
2. $\left(B_{X}, w\right)$ is compact.
3. X^{*} is reflexive.

Proof. 1. \Rightarrow 2. Since X is reflexive, $X=X^{* *}$, which implied that the weak topology on X is the same as the w^{*} t topology on $X^{* *}$. Then $\left(B_{X}, w\right)=\left(B_{X^{* *}}, w^{*}\right)$ is compact by Banach-Alaoglu theorem.
$2 . \Rightarrow 1$. The restriction of the $\mathrm{w}-*$ topology on $X^{* *}$ to X is the weak topology on X. Since B_{X} is weakly compact, it is a w-* compact subset of $B_{X^{* *}}$ hence is w-* closed. By Goldstein's theorem, $B_{X^{* *}}={\overline{B_{X}}}^{w^{*}}=B_{X}$, which implies that $X=X^{* *}$.

1. $\Rightarrow 3$. If X is reflexive, $\sigma\left(X^{*}, X\right)=\sigma\left(X^{*}, X^{* *}\right)$. So $\left(B_{X^{*}}, w\right)=\left(B_{X^{*}}, w^{*}\right)$, which is compact by Banach-Alaoglu theorem. Then by " $2 . \Rightarrow 1 . ", X^{*}$ is reflexive.
2. $\Rightarrow 1$. If X^{*} is reflexive, $\sigma\left(X^{* *}, X^{*}\right)=\sigma\left(X^{*}, X^{* * *}\right)$. B_{X} is norm-closed in $X^{* *}$ since X is complete. So B_{X} is weakly closed by Mazur's theorem. Then B_{X} is w-* closed in $X^{* *}$. By Goldstein's theorem, $B_{X^{* *}}={\overline{B_{X}}}^{w^{*}}=B_{X}$ and X is then reflexive.

Remark 4.13. $1 . \Leftrightarrow 3$. has a easy direct proof.
Remark 4.14. If X is reflexive and separable, then $\left(B_{X^{*}}, w\right)$ is a compact metric space.
Recall that we have shown if X is separable, then $X \hookrightarrow l^{\infty}$ isometrically. Now we aim to show that $X \hookrightarrow C[0,1]$ isometrically.

Lemma 4.19. If K is a non-empty compact metric space, then K is a continuous image of the Cantor set \triangle. Here $\triangle=\{0,1\}^{\mathbb{N}}$ with the product topology. Note that \triangle is a compact metric space by proposition 4.1 and theorem 4.2.

Note. \triangle is homeomorphic to

$$
\begin{equation*}
\left\{\sum_{n=1}^{\infty}\left(2 \epsilon_{n}\right) 3^{-n}:\left(\epsilon_{n}\right)_{n=1}^{\infty} \in \triangle\right\} \subset C[0,1] \tag{4.33}
\end{equation*}
$$

Theorem 4.20. Let X be a normed space. If X is separable, then $X \hookrightarrow C[0,1]$ isometrically.
Proof. Let $K=\left(B_{X^{*}}, w^{*}\right)$, then K is a compact metric space. the map $X \rightarrow C(K):\left.x \mapsto \hat{x}\right|_{K}$ is an isomorphism into $C(K)$. By lemma 4.19, there exists a continuous surjective map $\phi: \triangle \rightarrow K$, which yields an isometric isomorphism $C(K) \rightarrow C(\triangle): f \mapsto f \circ \phi$ into $C(\triangle)$, where $f \in C(K)$
Finally, we have an isometric isomorphism $C(\triangle) \rightarrow C[0,1]$: given $g \in C[0,1]$, thinking of $\triangle \subset C[0,1]$, we extend g to the whole $[0,1]$ to a piecewise linear function.

5 The Krein-Milman theorem

6 Banach algebras

6.1 Elementary properties and examples

Let A be an algebra over \mathbb{R} or \mathbb{C}, i.e. a vector space with multiplication which satisfies

- $(a b) c=a(b c)$;
- $a(b+c)=a b+a c ;$
- $(a+b) c=a c+b c ;$
- $\lambda(a b)=\lambda(a b)$;
for any scalar λ. An algebra A is both a ring and a vector space. The structure (A, \cdot) is a semigroup. An algebra is commutative is its ring multiplication is commutative.

Definition 6.1. An (two sided) ideal I of an algebra A is a subset of A such that

- I is a vector subspace of A;
- $A I \subset I$ and $I A \subset I$.

Definition 6.2. An algebra norm $\|\cdot\|$ on A is a norm such that

$$
\begin{equation*}
\|a b\| \leq\|a\| \cdot\|b\| \tag{6.1}
\end{equation*}
$$

for all $a, b \in A$. The pair $(A,\|\cdot\|)$ is a normed algebra.
Note. The multiplication is continuous: $a_{n} \rightarrow a, b_{n} \rightarrow b$ implies $a_{n} b_{n} \rightarrow a b$.
Definition 6.3. A Banach algebra(B.A.) is a complete normed algebra.
An algebra A is unital if there exist elements 1 (or 1_{A}) such that $1 \neq 0,1 a=a 1=a, \forall a \in A$. A unital normed algebra is a normed unital algebra such that $\|1\|=1$. If $\|1\| \neq 1$, then one can find an equivalent norm $|\|\cdot \mid\|$ such that $|||1| \|=1$, for instance,

$$
\begin{equation*}
\|\mid\| a\|\|=\sup \{\|b a\|: b \in A,\|b\| \leq 1\} . \tag{6.2}
\end{equation*}
$$

Definition 6.4. A unital Banach algebra is a complete unital normed algebra.
A homomorphism between algebras A, B is a linear map $\Phi: A \rightarrow B$ such that $\Phi(a b)=$ $\Phi(a) \Phi(b)$, for all $a, b \in A$. If A, B are unital, then we say Φ is unital if $\Phi\left(1_{A}\right)=1_{B}$.
If A, B are normed algebras, a homomorphism $\Phi: A \rightarrow B$ may or may not be continuous. However, by an isomorphism we mean a bijective homomorphism $\Phi: A \rightarrow B$ such that both Φ and Φ^{-1} are continuous.
From now on we assume our scalar field to be \mathbb{C}.
Example 6.1. Let K be a compact, Hausdorff topological space. Then $C(K)$ is a unital, commutative Banach algebra with pointwise multiplication and sup-norm.

Example 6.2. The uniform algebras are closed subalgebra of $C(K)$, which contain 1 and separate the points of K. For example, let $K=\Delta\{z \in \mathbb{C}:|z| \leq 1\}$ the disc algebra, then

$$
\begin{equation*}
A(\Delta)=\left\{f \in C(\Delta):\left.f\right|_{\text {int } \Delta} \text { is analytic }\right\} \tag{6.3}
\end{equation*}
$$

is a uniform algebra. More generally, for a nonempty and compact space $K \subset \mathbb{C}$, we have

$$
\begin{equation*}
P(K) \subset R(K) \subset O(K) \subset A(K) \subset C(K), \tag{6.4}
\end{equation*}
$$

where these are the closures in $C(K)$ of the subalgebra of, respectively, polynomial functions, ration functions without poles in K, functions that are analytic on an open neighborhood of K, and $A(K)=\left\{f \in C(K):\left.f\right|_{\text {int } \Delta}\right.$ is analytic $\}$. We'll use the fact that

$$
\begin{align*}
& R(K)=P(K) \Longleftrightarrow \mathbb{C} \backslash K \text { is connected } \tag{6.5}\\
& A(K)=C(K) \Longleftrightarrow \operatorname{int} K=\emptyset . \tag{6.6}
\end{align*}
$$

Example 6.3. Let K be $L^{1}(\mathbb{R})$ with convolution as multiplication

$$
\begin{equation*}
f * g=\int_{-\infty}^{\infty} f(s) g(s-t) d s \tag{6.7}
\end{equation*}
$$

then K is a non-unital commutative Banach algebra.
Example 6.4. Let X be a Banach space,

$$
\begin{equation*}
\mathcal{B}(X)=\{T: X \rightarrow X, T \text { is linear and bounded }\} \tag{6.8}
\end{equation*}
$$

then $\mathcal{B}(X)$ is a unital Banach algebra under composition as multiplication and operator norm. If $\operatorname{dim} X>1$, then $\mathcal{B}(X)$ is non-commutative.
An important special case: closed subalgebras of $\mathcal{B}(\mathcal{H})$, where \mathcal{H} is a Hilbert space. For example $\mathcal{B}\left(\ell_{2}^{n}\right) \cong M_{n}(\mathbb{C})$.

6.2 Elementary constructions

- Every closed subalgebra of a Banach algebra is a Banach algebra. A unital subalgebra of a unital algebra is a subalgebra containing the unit.
- Unitization Let A be a complex algebra. Let $A_{+}=A \oplus \mathbb{C}$ with multiplication

$$
\begin{equation*}
(x, \lambda)(y, \mu)=(x y+\lambda y+\mu x, \lambda \mu) . \tag{6.9}
\end{equation*}
$$

Then A_{+}is a unital algebra with identity $1_{A_{+}}=(0,1)$. If A is a normed algebra, then so is A_{+}with norm $\|(x, \lambda)\|=\|x\|+|\lambda|$. Note that $\|1\|=1$.
A is identified with $\{(x, 0): x \in A\}$ which is a closed ideal of $A_{+} . A_{+}$is complete if and only if A is complete.

- Ideals If I is an ideal of a normed algebra A, then so is \bar{I}. If I is a closed ideal of A, then A / I is a normed algebra. If A is a Banach algebra. and I is a proper and closed ideal of A, then A / J is a unital normed algebra. $(\|1+I\|=1$ will follow from lemma 1 below.)
- Completeion Every normed algebra has a completion which is a Banach algebra. Let $X=\tilde{A}$ be the completion of A as a Banach space. For $a \in A, L_{a}(b)=a b$ for any $b \in A$. We can extend L_{a} uniquely to a bounded linear operator \tilde{L}_{a} on X. It's easy to prove that $a \mapsto \tilde{L}_{a}$ is an isometric isomorhpism of A onto a subalgebra of Banach algebra $\mathcal{B}(X)$. Take the closure of that subalgebra in $\mathcal{B}(X)$ we can get a completion of A.

6.3 Group of units and spectrum

Lemma 6.1. Let A be a unital Banach algebra and $x \in A$. If $\|1-x\|<1$, then x is invertible.

Proof. Let $x=1-h$, where $h=1-x$. Note that $\|h\| \leq 1$.

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|h^{n}\right\| \leq \sum_{n=1}^{\infty}\|h\|^{n} \leq \frac{1}{1-\|h\|}<\infty \tag{6.10}
\end{equation*}
$$

so $s=\sum_{n=1}^{\infty} h^{n}$ converges and $x s=(1-b) \sum_{n=1}^{\infty} h^{n}=1$. Similarity we have $s x=1$.
For a unital algebra A, let $G(A)$ be the group of invertible elements of A.
Definition 6.5. Let A be a unital algebra, $x \in A$. The spectrum of x in A is $\sigma_{A}(x)=$ $\sigma(x)=\{\lambda \in \mathbb{C} \mid \lambda 1-x \notin G(A)\}$.

If A is non-unital, let $\sigma_{A}(x)=\sigma_{A+}(x)$.
Example 6.5. Let $A=M_{n}(\mathbb{C})$, then $\sigma_{A}(x)=$ set of eigenvalues of x.
Example 6.6. Let $A=C(K)$, where K is compact and Hausdorff, then $\sigma_{A}(f)=f(K)$.
Theorem 6.2. If A is a Banach algebra, then $\sigma_{A}(x)$ is a non-empty, compact set of $\{\lambda \in$ $C:\|\lambda\| \leq\|x\|\}$ for any $x \in A$.

Proof. Without loss of generality, we can assume A is unital. Let $x \in A$, if $\lambda \in \mathbb{C}$ and $|\lambda|>\|x\|$, then $\left\|\frac{x}{\lambda}\right\|<1$, so $1-\frac{x}{\lambda} \in G(A)$ by lemma 1 . So $\lambda 1-x \in G(A)$ and $\lambda \notin G(A)$. The function $\lambda \mapsto \lambda 1-x: \mathbb{C} \mapsto A$ is continuous. $\sigma_{A}(x)=$ inverse image of the closed set $A \backslash$ $G(A)$ by Corollary 2 .
Define $f: \mathbb{C} \backslash \sigma_{A}(x) \mapsto A$ by $f(\lambda)=(\lambda 1-x)^{-1}$.

$$
\begin{align*}
f(\lambda)-f(\mu) & =(\lambda 1-x)^{-1}-(\mu 1-x)^{-1} \tag{6.11}\\
& =(\mu 1-x)^{-1}[(\mu 1-x)-(\lambda 1-x)](\lambda 1-x)^{-1} \tag{6.12}\\
& =(\mu-\lambda) f(\lambda) f(\mu) . \tag{6.13}
\end{align*}
$$

Hence

$$
\begin{equation*}
\frac{f(\lambda)-f(\mu)}{\lambda-\mu}=-f(\lambda) f(\mu) \tag{6.14}
\end{equation*}
$$

which converges to $-f(\lambda)^{2}$ as $\mu \rightarrow \lambda$. Since f is continuous by Corollary 2 , we get f is analytic.
If $|\lambda|>\|x\|$, then

$$
\begin{equation*}
\left\|(\lambda 1-x)^{-1}\right\|=\left\|\frac{1}{\lambda}\left(1-\frac{x}{\lambda}\right)^{-1}\right\| \leq \frac{1}{|\lambda|} \cdot \frac{1}{1-\frac{\|x\|}{|\lambda|}}=\frac{1}{|\lambda|-\|x\|} \tag{6.15}
\end{equation*}
$$

which tends to 0 as $\lambda \rightarrow \infty$. (by lemma 1)
If $\sigma_{A}(x)=\emptyset$, then f is analytic on \mathbb{C}, bounded $(f(\lambda) \rightarrow 0 a s|\lambda| \rightarrow \infty)$. Hence by Liouville's theorem, f is a constant function and $f \equiv 0$, which gives a contradiction.

Example 6.7. Let A be an algebra of complex valued functions on a set K. Assume A is a Banach algebra in some norm $\|\cdot\|$. For $f \in A, x \in K$, if $f(x) \neq 0$, then $f(x) \in \sigma_{A}(x)$. By Theorem 3, $|f(x)| \leq\|f\|$, so $A \subset l_{\infty}(K)$. Also, $\|f\|_{\infty}=\sup _{K}|f| \leq\|f\|$.

Corollary 6.3 (Gelfand-Mazur). If A is a unital normed complex division algebra, then $A \cong \mathbb{C}$.

6.4 Commutative Banach algebra

7 Holomorphic functional calculus

$8 \quad C^{*}$ algebras

A ${ }^{*}$-algebra is a (complex) algebra A with an involution, i.e. a map $*: A \rightarrow A$ such that

- $(\lambda x+\mu y)^{*}=\bar{\lambda} x^{*}+\bar{\mu} y^{*}$,
- $(x y)^{*}=y^{*} x^{*}$,
- $x * *=x$, for every $x, y \in A$ and λ, μ are scalars.

Note that if A is unital, then $1^{*}=1$.
Definition 8.1. A C^{*} algebra is a Banach algebra with an involution such that $\left\|x x^{*}\right\|=\|x\|^{2}$, for every $x \in A$.

Note that if A is unital, then $\|1\|=1$.
Example 8.1. $C(K)$ is a C^{*} algebra with involution $f^{*}(x)=\overline{f(x)}$, where K is compact and Hausdorff.

Example 8.2. $\mathcal{B}(\mathcal{H})$ is a C^{*} algebra with involution $T *=$ adjoint operator of T, where \mathcal{H} is a Hilbert space.

Example 8.3. A closed, ${ }^{*}$-subalgebra \mathcal{B} of a C^{*} algebra is a C^{*} algebra. So all the closed *-subalgebra (C^{*} subalgebra) of $\mathcal{B}(\mathcal{H})$, are C^{*} subalgebras.

