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Functional Analysis 1 PRELIMINARIES

Abstract

These notes are intended as a resource for myself; past, present, or future students of
this course, and anyone interested in the material. The goal is to provide an end-to-end
resource that covers all material discussed in the course displayed in an organized
manner. If you spot any errors or would like to contribute, please contact me directly.

1 Preliminaries

1.1 Review of linear analysis

1.2 Hilbert spaces and spectral theory

1.3 Some important theorems in Banach spaces

Lemma 1.1 (Risez). Let X be a normed space. Suppose Y is a closed proper subspace of X,
then ∀ε > 0, ∃ ‖x‖ = 1 such that d(x, Y ) = infy∈Y ‖x− y‖ > 1− ε.

Proof. Pick z ∈ X \ Y . Since Y is closed, d(z, Y ) > 0, so there exists y ∈ Y such that
(1− ε)‖z − y‖ < d(z, Y ). Let x = (z − y)/‖z − y‖ ∈ BX ,

d(x, Y ) = d
( z

‖z − y‖
, Y
)

=
d(z, Y )

‖z − y‖
> 1− ε. (1.1)

Remark 1.1. Let Y be a subspace of X. Suppose there exists a 0 ≤ δ < 1 such that for
every x ∈ BX , there exists a y ∈ Y with ‖x− y‖ ≤ δ. Then Y = X.

Theorem 1.2. Let X be a normed space. Then the dimension of X is finite if and only if
BX is compact.

Proof. (⇒) Since X ∼ ln2 , the result follows from Heine-Borel theorem.
(⇐) Assume dimX =∞, we can construct a sequence (xn) ∈ BX such that ‖xm− xn‖ > 1/2
for m 6= n. This is done by induction: having found x1, · · · , xn, we apply Risez’s lemma to
Y = span{x1, · · · , xn}, so there exists an xn+1 ∈ BX such that d(xn+1, Y ) > 1/2. Note that
x1 ∈ BX is arbitrary. Then we are done.

Theorem 1.3 (Stone-Weierstrass). Let K be a compact Hausdorff space. Consider CR(K) =
{f : R→ R : f is continuous} with the sup norm. Suppose A is a subalgebra of CR(K) that
separates the points of K (∀x 6= y in K, ∃f ∈ A, f(x) 6= f(y)) and contains the constant
function, then A = CR(K).

Proof. First we claim that if we are given two disjoint closed subsets E, F of K, then there
exists f ∈ A such that −1/2 ≤ f ≤ 1/2 on K, where −1/4 ≤ f on E and f ≥ 1/4 on F .
Then we are done. Let g ∈ CR(K), with ‖g‖∞ ≤ 1. Then we apply the claim to E = {g ≤
−1/4}, F = {g ≥ 1/4}, then ‖f − g‖∞ ≤ 3

4
. By Risez’s lemma, A = CR(K).

Proof of the claim. Fix x ∈ E. For any y ∈ F , ∃h ∈ A such that h(x) = 0, h(y) > 0, and
h ≥ 0 on K. There exists an open neighborhood V of y such that h > 0 on V . By an easy
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Functional Analysis 1 PRELIMINARIES

compactness argument, we can find a g = gx ∈ A such that g(x) = 0, g > 0 on F , and
0 ≤ g ≤ 1 on K.
There exists R = Rx > 0 such that g > 2

R
on F , and an open neighborhood U = Ux of x such

that g < 1
2R

on U . Do this for every x ∈ E. By compactness, we can find x1, · · · , xm ∈ E
such that ∪mi=1Uxi ⊃ E. Now we write gi = gxi , Ri = Rxi , Ui = Uxi , for 1 ≤ i ≤ m.
For fixed i, on Ui, we have

(1− gni )R
n
i ≥ 1− (giRi)

N = 1− 2−n → 1 (1.2)

On F , we have

(1− gni )R
n
i ≤ 1

(1 + gni )R
n
i
≤ 1

(giRi)n
≤ 2−n → 0. (1.3)

Now we can find an ni ∈ N such that if we let hi = 1− (1− gnii )R
ni
i , then hi ≤ 1/4 on Ui and

hi ≥
(

3
4

)1/m

on F .
Now let h = h1 · h2 · · ·hm, then h ∈ A and 0 ≤ h ≤ 1 on K. Note that h ≤ 1/4 on E and
h ≥ 3/4 on F . Finally, let f = h− 1/2.

Remark 1.2. We have used the Euler’s inequality:

1−Nx ≤ (1− x)N ≤ 1

(1 + x)N
≤ 1

Nx
(1.4)

for 0 < x < 1 and N ≥ 1.

Remark 1.3. Stone-Weierstrass fails for complex scalars. In fact, let ∆ = {z ∈ C : |z| = 1}
and D = int∆ = δo = {z ∈ C : |z| < 1}. Consider the disk algebra

A(∆) = {f ∈ C(∆) : f is analytic on D}. (1.5)

Then A(∆) is a closed subalgebra of C(∆).

Theorem 1.4 (Complex Stone-Weierstrass). Let K be a compact Hausdorff space. Suppose
A is a subalgebra of CC(K) = {f : K → C : f is continuous} that separates points, contains
the constant functions, and are closed under complex conjugation( f ∈ A ⇒ f̄ ∈ A), then
A = CC(K).

Remark 1.4. There is a more general version for locally compact Hausdorff spaces.

Lemma 1.5 (Open mapping lemma). Let X be a Banach space, and Y be a normed spaces.
Let T : X → Y be a bounded linear map. Assume that there exists an M ≥ 0, and 0 ≤ δ < 1
such that T (MBX) is δ-dense in BY . Then T is surjective, that is, for any y ∈ Y we can
find an x ∈ X such that y = Tx, and

‖x‖ ≤ M

1− δ
‖y‖, (1.6)

i.e. T ( M
1−δBX) ⊃ BY . Moreover, Y is complete.

2



Functional Analysis 1 PRELIMINARIES

Definition 1.1. If A and B are subsets of a metric space (M,d), and let δ > 0, then A is
δ-dense in B if for any b ∈ B, we can find an a ∈ A such that d(a, b) ≤ δ.

Proof. Let y ∈ BY , then there exists x1 ∈MBX such that ‖y − Tx1‖ ≤ δ. Then there exists
an x2 ∈MBX such that

‖y − Tx1

δ
− Tx2‖ ≤ δ, (1.7)

i.e.
‖y − Tx1 − δTx2‖ ≤ δ2. (1.8)

Note that y−Tx1
δ
∈ By. Continue inductively, we obtain a sequence {xn} in MBX such that

‖y − Tx1 − T (δx2)− · · · − T (δn−1xn)‖ ≤ δn (1.9)

for any n ∈ N. Let x =
∑∞

n=1 δ
n−1xn. Since

∞∑
n=1

‖δn−1xn‖ ≤ δn−1M =
M

1− δ
, (1.10)

so the series converges and ‖x‖ ≤ M
1−δ . Now

y − Tx = lim
n→∞

(
y −

n∑
k=1

T (δk−1xk)
)

= 0. (1.11)

For the last part, let Ỹ be the completion of Y . Consider T as a map X → Ỹ . Since
BY = BỸ , T (MBX) is δ-dense in BY where 0 ≤ δ < 1. So T is onto as a map from X to Ỹ .
Hence Y = Ỹ .

Remark 1.5. If T (BX) ⊃ BY , then T (Bo
X) ⊃ Bo

Y .

Quotient spaces Let X be a normed space, Y ⊂ X a closed subspace. Then X/Y becomes
a normed space , where

‖x+ Y ‖ = d(x, Y ) = inf
y∈Y
‖x+ y‖. (1.12)

(Y closed is needed to show that if Z ∈ X/Y with ‖z‖ = 0, then z = 0)

Proposition 1.6. Let X be a Banach space and Y ⊂ X be a closed subspace. Then X/Y is
complete.

Proof. Consider the quotient map q : X → X/Y defined by q(x) = x+Y , then q ∈ B(X,X/Y ).
In fact,

‖q(x)‖ = ‖x+ Y ‖ ≤ ‖x‖ (1.13)

so ‖q‖ ≤ 1. Given x + Y ∈ Bo
X/Y , there exists y ∈ Y such that ‖x + y‖ < 1, and

q(x + y) = x + Y , so Bo
X/Y ⊂ q(Bo

X). Thus Bo
X/Y = q(Bo

X) (note that the other direction
follows from ‖q‖ ≤ 1). In particular, q(BX) ⊃ BX/Y . By open mapping lemma, X/Y is
complete.

3



Functional Analysis 1 PRELIMINARIES

Proposition 1.7. Every separable Banach space is a quotient of `1, i.e. there exists a closed
subspace Y of `1 such that `1/Y ' X.

Proof. Let {xn} be dense in BX . Define T : `1 → X by T (a) =
∑∞

n=1 anxn, where a = {an}.
Note that

∞∑
n=1

‖anxn‖ ≤
∞∑
n=1

|an| = ‖a‖1 <∞, (1.14)

so T ∈ B(`1, X) with ‖T‖ ≤ 1. Thus T (Bo
`1

) ⊂ Bo
X . Since {xn : n ∈ N} ⊂ T (B`1),

BX ⊂ T (B`1). By the open mapping lemma, Bo
X ⊂ T (Bo

`1
). Thus Bo

X = T (Bo
`1

).
Now let Y = kerT which is a closed subspace of `1. Let T̃ be the unique linear map such that

`1/Y

`1

X

q

T̃

T

commutes, where q : `1 → `1/Y is the quotient map. Note that T̃ is a bijection

T̃ (Bo
`1/Y

) = T̃
(
q(Bo

`1
)
)

= T (B0
`1

) = Bo
X . (1.15)

Hence T̃ is an isometric isomorphism.

Recall that a topological space K is normal if whenever E and F are disjoint closed subsets
of K, there exist disjoint open sets U and V such that E ⊂ U and F ⊂ V . For example, a
compact Hausdorff space is normal.

Lemma 1.8 (Uryson’s). Let K be a normal space, and let E and F be disjoint closed subsets
of X, then there exists a continuous function f : K → [0, 1] such that f = 0 on E and f = 1
on F .

So C(K) separates the points of K for a compact Hausdorff space K.

Theorem 1.9 (Tietze extension theorem). Let K be a normal topological space, and let L
be a closed subspace. Suppose g : L → R is continuous and bounded, then there exists a
continuous and bounded function f : K → R such that f

∣∣
L

= g and ‖f‖∞ = ‖g‖∞.

Remark 1.6. Assume f : K → R is continuous, f |L = g. Define

φ(λ) =

{
λ if |λ| ≤ ‖g‖∞,
λ
|λ‖g‖∞ if |λ| > ‖g‖∞.

(1.16)

Then φ is continuous with (φ ◦ f)|L = g and ‖φ ◦ f‖∞ = ‖g‖∞.

Proof. Let X = Cb(K) = {f : K → < : f is continuous and bounded}, then X is a Banach
space with sup norm. Let Y = Cb(L) and consider the map R : X → Y defined by R(f) = f |L.
Clearly R ∈ B(X, Y ) and ‖R‖ ≤ 1. We have to show that R is onto. In fact, we will show
R(BX) = BY .
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Functional Analysis 2 HAHN-BANACH THEOREMS AND LCS

Let g ∈ BY , apply the Uryson’s lemma with E = {g ≤ −1/3} and F = {g ≥ 1/3} to obtain
a continuous function f : K → [−1/3, 1/3] such that f = −1/3 on E and f = 1/3 on F .
Then f ∈ 1

3
BX and

‖Rf − g‖∞ ≤ 2/3. (1.17)

So R(1
3
BX) is 2

3
-dense in BY . By the open mapping lemma,

R
( 1

3
BX

1− 2/3

)
⊃ BY , (1.18)

i.e. R(BX) ⊃ BY .

Remark 1.7. The complex version is also true.

1.4 Review of measure theory

2 Hahn-Banach theorems and LCS

2.1 The Hahn-Banach theorems

For a normed space X, we write X∗ for its dual space, i.e.

X∗ = B(X,R) (2.1)

(or C instead of R), which is the space of all bounded linear functionals on X. X∗ is always
complete with the operator norm

‖f‖ = sup{|f(x)| : x ∈ BX}. (2.2)

So |f(x)| ≤ ‖f‖ · ‖x‖ for all x ∈ X and f ∈ X∗. We will use < x, f > as notation for f(x).

Definition 2.1. Let X be a real vector space. A functional p is called

• positive homogeneous if p(tx) = tp(x), for all t ≥ 0 and x ∈ X.

• subadditive if p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Theorem 2.1 (Hahn-Banach). Let X be a real vector space, and p be a positive homogeneous,
subadditive functional on X. Let Y be a subspace of X and g : Y → R be a linear functional
such that g(y) ≤ p(y) for all y ∈ Y . Then there exists a linear functional f : X → R such
that f |Y = g and f(x) ≤ p(x) for all x ∈ X.

Recall: let (P,≤) be a non-empty poset. A chain is a subset A ⊂ P which is linearly ordered
by ≤. An element x ∈ P is an upper bound for a subset A if a ≤ x for all a ∈ A. An element
x ∈ P is a maximal element of P if whenever x ≤ y for some y ∈ P , then y = x. We will
use the Zorn’s lemma in the proof of the Hahn-Banach theorem.

Lemma 2.2 (Zorn’s). Let P 6= ∅. If every non-empty chain in P has an upper bound, then
P has a maximal element.

5



Functional Analysis 2 HAHN-BANACH THEOREMS AND LCS

Proof of Theorem 2.1. Let

P = {(Z, h) : h : Z → R is a linear such that h|Y = g, h(z) ≤ p(z)∀z ∈ Z, }, (2.3)

where Z is a subspace of X, Y is a subspace of Z. Then P is non-empty since (Y, g) ∈ P .
Let {(Zi, hi) : i ∈ I} be a non-empty chain. Let Z =

⋃
i∈I Zi, and define h : Z → R by

h(z) = hi(z) for z ∈ Zi, i ∈ I. (2.4)

Then (Z, h) is an upper bound for the chain. ( Note that (Z1, h1) ≤ (Z2, h2) iff Z1 ⊂ Z2 and
h1 = h2|Z1)
By Zorn’s lemma, there exists a maximal element (W, f). We need show W = X. Suppose
not, pick an x0 ∈ X −W . Let W1 = W ⊕ Rx0 and define f1 : W1 → R by

f1(x+ λx0) = f(x) + λα (2.5)

where x ∈ W , λ ∈ R, and α is to be determined. We want

f1(x+ λx0) ≤ p(xλx0) (2.6)

for all x ∈ W and λ ∈ R. By positive homogeneity, it suffices to have

f1(x+ x0) ≤ p(x+ x0) and f1(x− x0) ≤ p(x− x0), (2.7)

which is
f(x) + α ≤ p(x+ x0) and f(x)− α ≤ p(x− x0). (2.8)

By rearranging the term, this is equivalent to

f(y)− p(y − x0) ≤ α ≤ p(x+ x0)− f(x) (2.9)

for any x, y ∈ W . Hence α exists iff

f(y)− p(y − x0) ≤ p(x+ x0)− f(x) (2.10)

for any x, y ∈ W . But this always holds since

f(x) + f(y) = f(x+ y) ≤ p(x+ y) ≤ p(x+ x0) + p(y − x0). (2.11)

Therefore, (W1, f1) ∈ P which is strictly bigger that (W, f). But this contradict the maximality
of (W, f). Hence W = X.

Definition 2.2. A seminorm on a real or complex vector space X is a function p : X → R
(or C) such that

• p(x) ≥ 0 for all x ∈ X,

• p(λx) = |λ|p(x) for all x ∈ X and λ is a scalar,

• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

6



Functional Analysis 2 HAHN-BANACH THEOREMS AND LCS

Remark 2.1. We have the following inclusions:

positive homogeneous+subadditive → seminorm→ norm (2.12)

Theorem 2.3 (Hahn-Banach). Let X be a real or complex vector space, and p a seminorm
on X. Given a subspace Y ⊂ X, and a linear functional g on Y such that

|g(y)| ≤ p(y) ∀y ∈ Y. (2.13)

Then g extends to a linear functional f on X such that

|f(x)| ≤ p(x) ∀x ∈ X. (2.14)

Proof. (Real scalar) We have g(y) ≤ p(y) ∀y ∈ Y . By Theorem 2.1, there exists f : X → R
such that f |Y = g and f(x) ≤ p(x) for all x ∈ X. Since

− f(x) = f(−x) ≤ p(−x) = p(x) ∀x ∈ X, (2.15)

we have |f(x)| ≤ p(x).
(Complex scalar) Consider g1 = Re(g), that is, g1(y) = Re

(
g(y)

)
, which is a real linear map

Y → R and
|g1(y)| ≤ |g(y)| ≤ p(y) ∀y ∈ Y. (2.16)

By the real case, there exists a real linear functional f1 : X → R such that f1|Y = g1 and
|f1(x)| ≤ p(x) for all x ∈ X. Now we seek a complex linear functional f : X → C such that
Re(f) = f1. In fact, such an f is unique. Write f(x) = f1(x) + if2(x). Note that

f(x) = −if(ix) = −if1(ix) + f2(ix), (2.17)

so
f(x) = f1(x)− if1(ix). (2.18)

Define f by this formula, so f is real-linear and f(ix) = if(x) for all x ∈ X. Hence f : X → C
is complex-linear and Re(f) = f1. Note that now

Re(f |Y ) = f1|Y = g1 = Re(g). (2.19)

By uniqueness, f |y = g. Given x ∈ X, choose a λ ∈ C with |λ| = 1 such that

|f(x)| = λf(x) = f(λx) = f1(λx) ≤ p(λx) = p(x). (2.20)

Remark 2.2. If X is a complex normed space, then (X∗)R → (XR)∗, f 7→ Re(f) is an
isometric isomorphism (real linear).

Corollary 2.4. Let x0 ∈ X, then there exists a linear functional on X such that f(x0) = p(x0),
and |f(x)| ≤ p(x) ∀x ∈ X.

Proof. Let Y = span{x0}, and define g(λx0) = λp(x0) for all λ. Then g is a linear functional

7



Functional Analysis 2 HAHN-BANACH THEOREMS AND LCS

on Y . By Theorem 2.3, g extends to a linear functional f on X such that |f(x)| ≤ p(x)
∀x ∈ X, and f(x0) = g(x0) = p(x0).

Theorem 2.5 (Hahn-Banach). Let X be a normed space, then

• If Y is a subspace of X, g ∈ Y ∗, then there exists f ∈ X∗ such that f |Y = g and
‖f‖ = ‖g‖.

• If x0 ∈ X and x0 6= 0, then there exists an f ∈ SX∗ such that f(x0) = ‖x0‖.

Proof. a) Define p(x) = ‖g‖ · ‖x‖. Then this is a seminorm on X. Since ‖g(y)‖ ≤
‖g‖ · ‖y‖ = p(y), by Theorem 2.3 there exists linear functional f on X such that f |Y = g
and |f(x)| ≤ p(x) = ‖g‖ · ‖x‖ for all x ∈ X. Hence f ∈ X∗ with ‖f‖ ≤ ‖g‖. So ‖f‖ = g‖.

b) Let Y = span{x0}, and define g : Y → scalar by g(λx0) = λ‖x0‖. Then g ∈ Y ∗ and
‖g‖ = 1. By a), there exists an f ∈ X∗ with f |Y = g and ‖f‖ = ‖g‖ = 1. In particular,
f(x0) = g(x0) = ‖x0‖.

Remark 2.3. a) can be viewed as a linear version of Tietze’s extension theorem.

Remark 2.4. b) says that X∗ separates the points of X: if x 6= y in X, apply b) to x0 = x−y.
Thus there are plenty of linear functionals on X.

Remark 2.5. The functional f in b) is call the norming functional for x0 or the supporting
functional at x0. It shows that

‖x0‖ = sup{|f(x0)| : f ∈ BX∗}. (2.21)

In complex plane, we can replace f(x0) by Re
(
f(x0)

)
. Assume that ‖x0‖ = 1, then the

half-space {x ∈ X : f(x) ≤ 1} (or {x ∈ X : Re(f(x)) ≤ 1} in the complex case) is a sort of
tangent to BX at x0.

2.2 Bidual

For a normed space X, we write X∗∗ for (X∗)∗ = B(X, scalar), which is the Banach space
of all bounded linear functionals on X∗ with the operator norm. For x ∈ X, we define
x̂ : X∗ → R(or C) by x̂(f) = f(x) (evaluation at x). Then x̂ ∈ X∗∗ and ‖x̂‖ ≤ ‖x‖. The
map x 7→ x̂ : X → X∗∗ is called the canonical embedding.

Theorem 2.6. The canonical embedding defined above is an isometric isomorphism of X
into X∗∗.

Proof. For x ∈ X, it’s easy to show that x̂ is linear. Since

|x̂(f)| ≤ |f(x)| ≤ ‖f‖ · ‖x‖ ∀f ∈ X∗, (2.22)

so x ∈ X∗∗ and ‖x̂‖ ≤ ‖x‖. By Theorem 2.5, there exists f ∈ BX∗ such that ‖x‖ = f(x). So

‖x̂‖ ≥ |x̂(f)| = ‖x‖ (2.23)

Therefore, ‖x̂‖ = ‖x‖. Clearly, the map x 7→ x̂ is linear.

8



Functional Analysis 2 HAHN-BANACH THEOREMS AND LCS

Remark 2.6. Using the bracket notation, we have

< f, x̂ >=< x, f >= f(x) (2.24)

for x ∈ X, f ∈ X∗.

Remark 2.7. The image X̂ = {x̂ : x ∈ X} of the canonical embedding in X∗∗ is closed iff
X is complete.

Remark 2.8. In general, the closure of X̂ in X∗∗ is a Banach space of which X is a dense
subspace. So we proved that any normed space X has a completion which is a pair (Z, j)
where Z is a Banach space , and j : X → Z is isometric such that j(X) = Z. The completion
is unique up to isomorphisms. If (Z1, j1) and (Z2, j2) are both completions, then there exists
a unique isometric isomorphism θ : Z1 → Z2 such that the following diagram

Z1/Y

X

Z

θ

j1

j2

commutes, i.e. θ ◦ j1 = j2.

Definition 2.3. A normed space X is reflexive if the canonical embedding of X into X∗∗
is surjective, i.e. X̂ = X∗∗.

By definition a reflexive space must be complete.

Example 2.1. The spaces `p for 1 < p <∞, Hilbert spaces, and finite-dimensional spaces
are all reflexive.

Example 2.2. The spaces c0, `1, L1[0, 1] are not reflexive.

Remark 2.9. There are Banach spaces X with X ' X∗∗ which are not reflexive. So for
1 < p < ∞, it is not sufficient to say that `∗∗p ' `∗q ' `p (where 1

p
+ 1

q
= 1) implies `p is

reflexive. One also has to verify that this isomorphism is indeed the canonical embedding.

2.3 Dual operators

Recall that for normed linear spaces X, Y , we denote the space of bounded linear maps
T : X → Y by B(X, Y ). This is a normed space in the operator norm:

‖T‖ = sup{‖Tx‖ : x ∈ BX}. (2.25)

Moreover, B(X, Y ) is complete if and only is Y is.
We define the dual operator of T , T ∗ : Y ∗ → X∗ by T ∗(g) = g ◦ T for g ∈ Y ∗, i.e.
T ∗ (g)(x) = g(Tx) for x ∈ X, g ∈ Y ∗. In bracket notation,

< x, T ∗g >=< Tx, g > . (2.26)

9
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T ∗ is well-defined since the composite of continuous linear maps is continuous and linear.
Moreover, T∗ ∈ B(Y ∗, X∗) and

‖T ∗‖ = sup
g∈BY ∗

‖T ∗g‖ (2.27)

= sup
g∈BY ∗

sup
x∈BX

‖g ◦ T (x)‖ (2.28)

= sup
x∈BX

sup
g∈BY ∗

‖g(Tx)‖ (2.29)

= sup
x∈BX

‖(Tx)‖ = ‖T‖. (2.30)

Example 2.3. Let 1 < p < ∞, define T : `p → `p to be the right shift operator by
T (x1, x2, · · · ) = (0, x1, x2, · · · ), then T ∗ : `∗p ' `q → `q ' `∗p is the left shift operator.

Properties of dual operators

• (IdX)∗ = IdX∗ .

• When X and Y are Hilbert spaces, the dual operator T ∗ corresponds the adjoint of T
by identifying X∗ and Y ∗ with X and Y respectively.

• (λS + µT )∗ = λS∗ + µT ∗ for scalars λ, µ, and S, T ∈ B(X, Y ). In fact,

< x, (λS + µT )∗(g) > =< (λS + µT )x, g > (2.31)
= λ < Sx, g > +µ < Tx, g > (2.32)
= λ < x, S∗g > +µ < x, T ∗g > (2.33)
=< x, (λS∗ + µT ∗)g > . (2.34)

Note that there is no complex conjugation here which is different from adjoints in
Hilbert spaces. This is due to the fact that the identification of a Hilbert space with its
dual is conjugate linear in the complex case.

• (ST )∗ = T ∗S∗, where T ∈ B(X, Y ) and S ∈ B(Y, Z).

• If X ∼ Y , then X∗ ∼ Y ∗.

Remark 2.10. The map T 7→ T ∗ is an isometric isomorphism of B(X, Y ) into B(Y ∗, X∗) .

Remark 2.11. We have T̂ x = T ∗∗x̂. In fact, let x ∈ X, g ∈ Y ∗,

< g, T̂x > =< Tx, g > (2.35)
=< x, T ∗g > (2.36)
=< T ∗g, x̂ > (2.37)
=< g, T ∗∗x̂ > . (2.38)

Hence the following diagram commutes,

10
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X Y

X∗∗ Y ∗∗

T

π π

T ∗∗

where π denotes the canonical embedding.

Theorem 2.7. If X∗ is separable, then so is X.

Proof. Let {x∗n : n ∈ N} be a dense subset of SX∗ , then for each n, we can pick an xn ∈ BX

such that x∗n(xn) > 1
2
. Let Y = span{xn}n∈N, we claim that Y = X. Suppose not, take

x0 ∈ X \Y . Since Y is closed, d(x0, Y ) > 0. Let Z = span(Y ∪{x0}). Define g : Z → scalar
by

g(y + λx0) = λd(x0, Y ) (2.39)

for scalar λ and y ∈ Y . Observe that

|g(y + λx0)| = |λ|d(x0, Y ) ≤ |λ| · ‖y
λ

+ x0‖ = ‖y + λx0‖ (2.40)

for y ∈ Y and λ 6= 0. Hence g ∈ Z∗ with ‖g‖ ≤ 1. Let {yn}n∈N be a sequence in Y such that
limn→∞ ‖yn + x0‖ = d(x0, Y ), then it follows that

lim
n→∞

g(yn + x0)

‖yn + x0‖
= 1, (2.41)

and therefore ‖g‖ = 1. By Theorem 2.5, there exists f ∈ X∗ such that f
∣∣
Z

= g and ‖f‖ = 1.
Now we can find an n such that ‖f − x∗n‖ < 1

100
, but then

1

2
< |x∗n(xn)| = |

(
x∗n − f

)
(xn)| < 1

100
(2.42)

which yields a contradiction.

Remark 2.12. The converse is false. For example, `1 is separable but `∞ is not.

Theorem 2.8. Every separable Banach space X is isometrically isomorphic to a subspace of
`∞, i.e. X ↪→ `∞.

Proof. Let {xn}n∈N be a dense subset in X. For each n, pick an x∗n in SX∗ such that
x∗n(xn) = ‖xn‖ (WLOS assume X 6= {0}). Define T : X → `∞ by

T (x) =
(
x∗n(x)

)∞
n=1

. (2.43)

Since
|x∗n(x)| ≤ ‖x∗n‖ · ‖x‖ ≤ ‖x‖, ∀n ∈ N, (2.44)

Tx ∈ `∞ and ‖Tx‖∞ ≤ ‖x‖. Clearly, T is linear. Given x ∈ X. We can find an sequence
{xnk}n∈N such that xnk → x. Observe that

‖x∗nk(x)‖ ≥ ‖xnk‖ − ‖x∗nk(x− xnk)‖ ≥ ‖xn‖ − 2‖x− xn‖. (2.45)

11
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Letting nk →∞, we can find an nj such that ‖xnj‖ ≥ ‖x‖ − ε for any given ε > 0. Taking
supremum over n, we get ‖Tx‖∞ ≥ ‖x‖.

Remark 2.13. Let S be the class of all separable Banach spaces, then `∞ is isometrically
universal for S. Note that `∞ 6∈ S. Question: does there exist a universal Z ∈ S for S. The
answer is yes and we will see it later.

Remark 2.14. Let SR be the class of separable reflexive spaces. Question: does there exist
a universal Z ∈ SR for SR. The answer is no, and it turns out to be much harder.

Theorem 2.9 (Vector-valued Liouville theorem). Let X be a complex Banach space, and
f : C→ X is an analytic and bounded function. Then f is constant.

Proof. Note: f is analytic means that limz→w
f(z)−f(w)

z−w exists for all w ∈ C. f is bounded
means that there exists M > 0 such that ‖f(z)‖ ≤M for all z ∈ C.
Now we return to the proof of the theorem. Let φ ∈ X∗, and consider the function
φ ◦ f : C→ C. Since φ is continuous and linear, the limit of

φ
(
f(z)

)
− φ
(
f(w)

)
z − w

(2.46)

exists and equals to φ
(
f ′(w)

)
. Hence φ ◦ f is analytic on C. Also,

|φ ◦ f(z)| ≤ ‖φ‖ · ‖f(z)‖ ≤M‖φ‖ (2.47)

for all z ∈ C. By the scalar Liouville’s theorem, φ ◦ f is constant, so φ
(
f(z) − f(0)

)
= 0

for all z ∈ C and φ ∈ X∗. By Theorem 2.5, X∗ separates the points of X, and therefore
f(z)− f(0) = 0 for all z ∈ C.

2.4 Locally convex spaces

A locally convex space(LCS) is a real or complex vector space with a family P of seminorms
on X ( be a pair (X,P)) that separates the points of X in the sense that for every x ∈ X
with x 6= 0, there is a seminorm p ∈ P with p(x) 6= 0.
The family P defines a topology on X: a set U ⊂ X is open if and only if for all x ∈ U , there
exist n ∈ N, p1, · · · , pn ∈ P , and ε > 0 such that

{y ∈ X : pk(y − x) < ε (k = 1, · · · , n)} ⊂ U. (2.48)

An alternative definition is
⋂
{p−1(0) : p ∈ P} = {0}.

Remark 2.15. Addition and scalar multiplication is continuous.

Remark 2.16. The topology of X is Hausdorff as P separates the points of X.

Remark 2.17. If Y ⊂ X is a subspace, then PY = {p|Y : p ∈ P} is a family of seminorms
on Y . The topology of LCS (Y,PY ) is the subspace topology on Y induced by X.

Remark 2.18. A sequence xn → x in X if and only if p(xn) → p(x) for all p ∈ P. (The
same holds for nets.)

12
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Remark 2.19. Let P and Q be two families of seminorms on X, both of which separate the
points of X. We say P and Q are equivalent if they induce the same topology, and we write
P ∼ Q in this case.

The topology of a locally convex space (X,P) is metrizable if and only if there exist countable
Q with Q ∼ P .

Definition 2.4. A Fréchet space is a complete metrizable locally convex space. In particular,
all Banach spaces are Fréchet spaces.

Example 2.4. Every normed space (X, ‖ · ‖) is a LCS with P = {‖ · ‖}.

Example 2.5. Let U be a non-empty, open subset of C, and let O(U) denote the space
of analytic functions f : U → C. For a compact subset K ⊂ U and f ∈ O(U), set
pK(f) = supz∈K |f(z)| and P = {pK : K ⊂ U, and K compact }. Then (O,P) is a locally
convex space whose topology is the topology of local uniform convergence.
There exists compact sets Kn ⊂ U, n ∈ N, such that Kn ⊂ int(Kn+1) and U =

⋃
nKn. Then

{pKn : n ∈ N} is countable and equivalent to P . Hence (O,P) is metrizable and in fact it is
a Fréchet space.
The topology of local uniform convergence is not normable because it cannot be induced by
a norm. This follows, for example, from Montel’s theorem : given a sequence {fn} in O(U)
such that {fK} is bounded in

(
C(K), ‖ · ‖

)
for every compact K ⊂ U , there is a subsequence

converges locally uniformly.

Theorem 2.10 (Montel’s theorem). If {fn} ⊂ O(U) is uniformly bounded on compact sets,
then there exists a subsequence of {fn} converges locally uniformly.

3 Risez Representation theorem
Letting K be a compact and Hausdorff space, then

C(K) = {f : K → C : f is continuous} (3.1)

is a complex Banach space with the sup norm

‖f‖ = ‖f‖∞ = sup{|f(x)| : x ∈ K}. (3.2)

Define
CR(k) = {f : K → R : f is continuous} (3.3)

which is a real Banach space. Similarly, we define

C+(K)∗ = {f ∈ CR(K) : f(x) ≥ 0,∀x ∈ K}. (3.4)

Next, we consider the dual spaces related to the previous spaces. Define M(K) to be the
dual of C(K)

M(K) = C(K)∗ = B(C(K),C) (3.5)

13
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If φ ∈M(K), we have the usual operator norm

‖φ‖ = sup{|φ(f)| : f ∈ C(K), ‖f‖ ≤ 1}. (3.6)

Similarly, we define

MR(K) = {φ ∈M(K) : φ(f) ∈ R,∀f ∈ CR(K)} (3.7)
M+(K) = {φ : C(K)→ C : φ is linear, and φ(f) ≥ 0,∀f ∈ C+(K)}. (3.8)

The elements of M+(K) are called positive linear functionals.

3.1 Risez representation theorem

Theorem 3.1 (Risez representation). For every φ ∈ M+(K), there exists a unique finite
Borel measure µ such that

φ(f) =

∫
K

f dµ, ∀f ∈ C(K). (3.9)

3.2 Lp spaces

Let (Ω,F , µ) be a measure space. Fix 1 ≤ p <∞. Lp(Ω,F , µ) or Lp is the real or complex
vector space of measurable functions f : Ω→ R(or C) such that∫

Ω

|f |p dµ ≤ ∞. (3.10)

Lp is a normed space with the norm

‖f‖p =
(∫

Ω

|f |p dµ
) 1
p
, (3.11)

provided we identify f, g if f = g a.e. on Ω, i.e. N = {x ∈ Ω : f(x) = g(x)} is a null set
(µ(N) = 0).t Lp(Ω,F , µ) is complete, where 1 ≤ p ≤ ∞.
‖ · ‖p is a seminorm on Lp. If ‖ · ‖ is a seminorm on a vector space X, then N = {x ∈ X :
‖x‖ = 0} is a subspace. Then ‖x+N‖ = ‖x‖ defines a norm on X/N .

The case p =∞ L∞ is the space of essentially bounded measurable scalar-valued functions
f on Ω, i.e. there exists a null set N ⊂ σ such that f is bounded on Ω \N , and we define

‖f‖∞ = ess sup |f | = inf{sup
Ω\N
|f | : N ⊂ Ω, N ⊂ Ω is a null set}. (3.12)

With this norm, L∞ becomes a normed space.

Theorem 3.2. Lp(Ω,F , µ), 1 ≤ p ≤ ∞ is complete.

Proof. 1) 1 ≤ p <∞.
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Let {fn} be a sequence in Lp such that
∑∞

n=1 ‖fn‖p < ∞. We will show that
∑∞

i=1 fk
converges in Lp. Define Sn =

∑n
k=1 |fk|. Let S =

∑∞
k=1 |fk|, notice that this may take the

value ∞. Suppose that S =∞ on some A ⊂ F with µ(A) > 0. Fix L > 0, then Spn ∧L↗ L
on A. By the monotone convergence theorem,∫

A

(Spn ∧ L)dµ→
∫
A

L = µ(A)L. (3.13)

Since

‖Sn‖p ≤
n∑
k=1

‖fk‖p =
∞∑
k=1

‖fk‖p
def
= M, (3.14)

We have ∫
A

(Spn ∧ L)dµ ≤ ‖Sn‖pp ≤Mp (3.15)

for all n, which implies that µ(A)L ≤Mp for all L. We have a contradiction.
Hence S <∞ a.e. (WLOS, suppose S <∞ everywhere). Now Spn ↗ Sp, by the monotone
convergence theorem ∫

Sp = lim

∫
Spn ≤Mp, (3.16)

so Sp ∈ L1.
Since S <∞ on Ω, we can define f =

∑∞
k=1. Since |

∑n
k=1 fk−f |p → 0 and |

∑n
k=1 fk−f |p ≤

2Sp ∈ L1, by the dominate convergence theorem,∫
Ω

|
n∑
k=1

fk − f |pdµ→ 0 (3.17)

as n→∞. So f ∈ Lp and
∑n

k=1 → f in Lp.

4 Weak Topologies

4.1 General weak topologies

Let X be a set, F be a family of functions such that for all f ∈ F , f is a function from X
to Yf , where each Yf is a topological space.

Definition 4.1. The weak topology on X generated by F , denoted by σ(X,F ), is the
smallest topology on X which makes each f ∈ F be continues.

Remark 4.1. A sub-base for σ(X,F ) is

S = {f−1(U) : f ∈ F , and U is open in Yf}, (4.1)

that is, σ(X,F ) consists of arbitrary unions of finite intersections of elements of S. More
generally, if Sf is a sub-base for the topology of Yf , then {f−1(U) : f ∈ F , U ∈ Sf} is also a
sub-base for σ(X,F ).
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Remark 4.2. V ⊂ X is open (V ∈ σ(X,F )) means that for every x ∈ V , there exist n ∈ N,
f1, f2, · · · , fn ∈ F , and open sets Ui in Yfi for i = 1, · · · , n, such that x ∈

⋂n
i=1 f

−1
i (Ui).

This is equivalent to for every x ∈ V , there exist n ∈ N, f1, f2, · · · , fn ∈ F , and open
neighborhoods Ui of fi(x) in Yfi for i = 1, · · · , n, such that

{y ∈ X : fi(y) ∈ Ui, i = 1, · · · , n} ⊂ V. (4.2)

Remark 4.3 (Universality Property). If Z is a topological space, then g : Z → X is
continuous if and only if g−1(f−1(U)) is open in Z, for any f ∈ F and U is open in Yf , which
is equivalent to say f ◦ g : Z → Yf is continuous for any f ∈ F .

Exercise 4.1. Show that if τ is a topology on X such that for any Z and g : Z → X,
g is continuous with respect to τ ⇔ f ◦ g : Z → Yf is continuous for any f ∈ F , then
τ = σ(X,F ).

Remark 4.4. If Yf is Hausdorff for any y ∈ F , and F separates the points of X (for any
x 6= y, there exists a f such that f(x) 6= f(y)), then σ(X,F ) is Hausdorff.

Example 4.1 (subspace topology). Let X be a topological space, Y ⊂ X is a subspace, and
i : X → Y be the inclusion map. Let τ be the topology of X, then σ(Y, {i}) is the subspace
topology of Y , which is denoted by τ |Y .

Example 4.2 (product topology). Let Xγ, γ ∈ Γ be a family of topological spaces. Let
X =

∏
γ∈ΓXγ={x: x is a function on Γ such that x(γ) = xγ ∈ Xγ, ∀γ ∈ Γ}. X is the

set of "Γ-tuples" x = (xγ)γ∈Γ. We have the projections πδ : X → Xδ (δ ∈ Γ), where
πδ(x) = x(δ) = xδ for all x = (xγ)γ∈Γ.
The product topology on X is σ(X, {πγ : γ ∈ Γ}). V ⊂ X is open means that for every
x = (xγ)γ∈Γ ∈ V , there exist n ∈ N, γ1, γ2, · · · , γn ∈ Γ, and open neighborhoods Ui of xγi in
Xγi for i = 1, · · · , n, such that

{y = (yγ)γ∈Γ ∈ X : yγi ∈ Ui, i = 1, · · · , n} ⊂ V. (4.3)

Proposition 4.1. For each n ∈ N, let (Yn, dn) be a metric space. Let X be a set, fn : X → Yn
be functions that separate the points of X, then σ(X, {fn|n ∈ N}) is metrizable.

Proof. If d is a metric, then so is d
d+1

which is equivalent to d. Without loss of generality,
let’s assume dn ≤ 1 for every n ∈ N. Then define

d(x, y) =
∞∑
n=1

2−ndn(fn(x), fn(y)), (4.4)

which is a metric on X. We need show the topology generated by d is equivalent to
σ(X, {fn|n ∈ N}). First assume d(x, xk) as k →∞, then 2−ndn(fn(x), fn(xk)) ≤ d(x, xk) for
every n ≥ 1 Id: (X, d)→ σ(X, {fn|n ∈ N}) is continues. (use the universality property) Id:
σ(X, {fn|n ∈ N})→ (X, d) is also continues. (by direct argument)

Theorem 4.2 (Tychonov). The product of compact spaces is compact in product topology.
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4.2 Weak topologies on vector spaces

Let E be a real or complex vector space. Let F be a vector space of linear functionals on E
such that separates the points of E (for every x 6= 0 in E, there exist an f ∈ F such that
f(x) 6= 0). We consider the weak topology σ(E,F ) on E. U ⊂ E is open ⇔ for every x ∈ U ,
there exist n ∈ N, f1, · · · , fn ∈ F , ε > 0, such that

{y ∈ E : |fi(x)− fi(y)| < ε, i = 1, · · · , n} ⊂ U. (4.5)

Remark 4.5. (E, σ(E,F )) is a locally convex space with defining seminorms: x→ |f(x)|
for x ∈ E and f ∈ F .

Note. (E, σ(E,F )) is Hausdorff, and its addition and scalar multiplication are continuous.

Lemma 4.3. Let E be as above, and let f, g1, · · · , gn be linear functionals on E. If ker f ⊃⋂n
i=1 ker gi, then f ∈ Span{g1, · · · , gn}.

Proof. Define g(x) =
(
g1(x), g2(x), · · · , gn(x)

)
, with ker g ⊂ ker f and x ∈ E. Then there

exists a unique linear functional f̃ : g(E)→ R such that f̃ ◦ g = f . Extend f̃ to the whole
Rn, then we can find a b = (b1, · · · , bn) ∈ Rn such that f̃

(
(a1, · · · , an)

)
=
∑n

i=1 aibi. So
f(x) = f̃ ◦ g(x) =

∑n
i=1 bigi(x), and f is therefore in the span of gi’s.

E
g //

f ��

Rn

f̃~~
R

Proposition 4.4. Let E,F be as above, then a linear functional f : E → R is σ(E,F )-
continuous if and only if f ∈ F , i.e. (E, σ(E,F ))∗ = F .

Proof. (⇐) By definition.
(⇒) Suppose f : E → R is continuous in the σ(E,F ) topology. There exists an open
neighborhood U of 0 in E such that |f(x)| < 1 for all x ∈ U . WLOG, let

U = {x ∈ E : |g(x)| < ε, i = 1, · · · , n} (4.6)

for some n ∈ N, g1, · · · , gn ∈ F , and ε > 0. Now if x ∈
⋂n
i=1 ker gi, then λx ∈ U for any

scalars. Hence
|f(λx)| = |λ||f(x)| < 1 (4.7)

for any scalar λ, which implies that f(x)=0. Then
⋂n
i=1 ker gi ⊂ ker f , by previous lemma we

have f ∈ span{g1, · · · , gn} ⊂ F .

Recall that we always identify the image of a normed space X under the canonical embedding
X → X∗∗ with X.

X ↪→ X∗∗

Let X be a normed space.
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Definition 4.2. Let E = X,F = X∗. Notice that by Hahn Banach theorem, X∗ separates the
points in X. Then σ(X,X∗) is the weak topology of X. We write (X,w) for (X, σ(X,X∗)).
Then U ⊂ X is weakly open (or w-open), i.e. U ∈ σ(X,X∗) ⇐⇒ ∀x ∈ U,∃ε > 0,∃n ∈
N,∃x∗1, · · · , x∗n ∈ X∗ such that

{y ∈ X : |x∗i (y)− x∗i (x)| < ε, i = 1, · · · , n} ⊂ U. (4.8)

Definition 4.3. Let E = X∗, F = X ↪→ X∗∗. Then σ(X∗, X) is the weak-star topology
of X∗. We write (X∗, w∗) for (X∗, σ(X∗, X)). Then U ⊂ X is weak-* open (or w*-open),
i.e. U ∈ σ(X∗, X) ⇐⇒ ∀x∗ ∈ U,∃ε > 0, ∃n ∈ N,∃x1, · · · , xn ∈ X such that

{y∗ ∈ X∗ : |y∗(xi)− x∗(xi)| < ε, i = 1, · · · , n} ⊂ U. (4.9)

Hence last proposition directly gives

Proposition 4.5. A linear functional f : X → R is w-continuous ⇔ f ∈ X∗. Similarly
g : X∗ → R is w*-continuous ⇔ g ∈ X. i.e. (X,w)∗ = X∗, (X∗, w∗)∗ = X.

It follows that σ(X∗, X∗∗) = σ(X∗, X) if and only if X is reflexive.

Properties

• (X,w) and (X∗, w∗) are locally convex spaces, hence Hausdorff. In addition, the scalar
multiplications are continuous.

• σ(X,X∗) ⊂ ‖ · ‖ topology, i.e. the weak topology of X is a subset of the topology on X
induced by norm. Similarly we have σ(X∗, X) ⊂ σ(X∗, X∗∗) ⊂ ‖ · ‖ topology (on X∗).

• If dimX <∞, then all these topologies coincide.

• If dimX =∞, and U is a w-open neighborhood of 0, then U is not bounded in norm.
Hence σ(X,X∗) ( ‖ · ‖ topology. Moreover, (X,w) is not metrizable (not even first
countable).

• If dimx is uncountable (e.g. X is complete and dimx = ∞), then (X∗, w∗) is not
metrizable (not even first countable).

• Let Y be a subspace of X, then σ(X,X∗)|Y = σ(Y, Y ∗) (by Hahn Banach). Similarly
σ(X∗∗, X∗)|X = σ(X,X∗). So the canonical embedding X → X∗∗ is a weak-to-weak-*
homeomorphism into X∗∗.

4.3 Weak and weak-* convergence

In X, xn
w−→ x means that {xn} converges weakly (i.e. in the weak topology) to x. This

is equivalent to
< xn, x

∗ >−→< x, x∗ > (4.10)

for any x∗ ∈ X∗.
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Similarly in X∗, x∗n
w∗−→ x∗ means that {x∗n} converges w-* (i.e. in the weak-star topology)

to x∗. This is equivalent to
< x, x∗n >−→< x, x∗ > (4.11)

for all x ∈ X.

Definition 4.4. B ⊂ X∗ is said to be weakly bounded if {x∗(x) : x∗ ∈ B} is bounded
∀x ∈ X.

Remark 4.6. The principle of uniform boundedness (PUB) says that:
let X be a Banach space, Y be a normed space, and T ∈ B(X, Y ) be a collection of linear
maps which is also pointwise bounded (i.e. supT∈T ‖T (x)‖ <∞ for any x ∈ X). Then T is
uniformly bounded, that is, supT∈T ‖T‖ <∞.

Proposition 4.6.

• Let X be a normed space, and A ⊂ X be weakly bounded, then A is norm-bounded.

• Let X be a Banach space, and B ⊂ X∗ be weak-* bounded, then B is norm-bounded.

Proof. i) Since A ⊂ X ⊂ X∗∗ = B(X∗,R), A is weakly bounded is equivalent to A is pointwise
bounded. In addition, X∗ is complete. Hence the result follows from PUB.
ii) Notice B ⊂ X∗ = B(X,R) which means that B is w-* bounded↔ B is pointwise bounded.
Since X is complete, we can apply PUB again.

Proposition 4.7.

• Let X be a normed space. If xn
w−→ x, then supn∈N ‖xn‖ <∞ and ‖x‖ ≤ lim inf ‖xn‖.

• Let X be a Banach space. If x∗n
w∗−→ x∗, then supn∈N ‖x∗n‖ <∞ and ‖x∗‖ ≤ lim inf ‖x∗n‖.

Proof. i) Since x∗(xn)→x ∗ (x) for every x∗ ∈ X∗, {x∗(xn) : n ∈ N} is bounded. Hence
supn∈N ‖x∗(xn)‖ <∞ and the result follows from the previous proposition.

|x∗(x)| = lim inf
n→∞

|x∗(xn)| ≤ lim inf
n→∞

‖x∗‖ · ‖xn‖. (4.12)

Pick x∗ ∈ X∗ such that ‖x∗‖ = 1 and x∗(x) = ‖x‖. We obtain that ‖x‖ ≤ lim inf ‖xn‖.

ii) Similar to i).

4.4 Hahn Banach separation theorem

Let (X,P) be a locally convex space. Suppose C is a convex subset of X with 0 ∈ int C.
We define µC : X → R by

µC = inf{t > 0 : x ∈ tC}. (4.13)

For x ∈ X, 0 · x = 0 ∈ int C, then by the continuity of scalar multiplication, there exists
some δ > 0 such that for any scalar λ such that |λ| < δ, we have λx ∈ C. Therefore x ∈ 1

δ
C.

So µC is well-defined.

19



Functional Analysis 4 WEAK TOPOLOGIES

Example 4.3. Let X be a normed space, and C = Bx is the unit ball. Then µC = ‖ · ‖.

Lemma 4.8. µC is positive homogeneous and subadditive.

{x ∈ X : µC(x) < 1} ⊂ C ⊂ {x ∈ X : µC(x) ≤ 1}. (4.14)

Furthermore, if C is open, then

C = {x ∈ X : µC(x) < 1}. (4.15)

Proof. From the definition, we get µC(tx) = tµC(x), ∀x ∈ X, ∀t > 0. Also µC(0) = 0.
Now given x, y ∈ X, fix s > µC(x), t > µC(y). So there exist s′ < s such that x ∈ s′C. Then

x

s
=
s′

s
· x
s′

+ (1− s′

s
) · 0 ∈ C (4.16)

since C is convex. So x ∈ sC. Similarly, y ∈ tC. It follows that

s

s+ t
· x
s

+
t

s+ t
· y
t

=
x+ y

s+ t
∈ C. (4.17)

Hence x + y ∈ (s + t)C and µC(x + y) ≤ s + t. Taking infimum over all s, t, we get
µC(x+ y) ≤ µC(x) + µC(y).
For the second part, note that µC(x) < 1⇒ x ∈ C is shown by above argument. x ∈ C ⇒
µC(x) < 1 is by definition.
Finally, suppose C is open and x ∈ C, then x·1 ∈ C. By the continuity of scalar multiplication,
there exists some δ > 0 such that (1 + δ)x ∈ C. Therefore, µC(x) ≤ 1/(1 + δ) < 1.

Remark 4.7. C is called symmetric if x ∈ C implies −x ∈ C. C is called balanced
if x ∈ C, λ ∈ C, and |λ| = 1 implies λx ∈ C. Note that in the case of real scalars,
"balanced"="symmetric".

Remark 4.8. If U is a neighborhood of 0, then there exists a convex and balanced neighbor-
hood of 0 such that V ⊂ U . Indeed, there exist n ∈ N, p1, · · · , pn ∈ P , and some ε > 0, such
that

V = {x ∈ X : pi(x) < ε, i = 1, · · · , n} ⊂ U. (4.18)

Remark 4.9. If U is a neighborhood of 0, then there exists a convex and balanced neighbor-
hood of 0 such that V + V ⊂ U . By previous remark, we can assume V to be convex and
balanced.

Theorem 4.9. (Hahn-Banach separation theorem) Let (X,P) be a real or complex locally
convex space. Let C be an open convex set in X such that 0 ∈ C. Given x0 ∈ X \ C, there
exists an f ∈ X∗ such that f(x) < f(x0) for all x ∈ C. (In complex case, <f(x) < <f(x0),
∀x ∈ C.)

Proof. i) (Real case) By previous lemma, we have a positive homogeneous and subadditive
functional µC . We define f : span{x0} → R by setting f(tx0) = tµC(x0). For t ≥ 0

f(tx0) = tµC(x0) = µC(tx0). (4.19)
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For t < 0,
f(tx0) = tµC(x0) ≤ 0 ≤ µC(tx0). (4.20)

In span{x0}, f is dominated by µC , so we can extend f to the whole X and is still dominated
by µC (Hahn-Banach).
If x ∈ C, then f(x) ≤ µC(x) < 1 ≤ µC(x0) = f(x0) by using lemma 4.8. Since C is a
neighborhood of 0, there exists a symmetric neighborhood U of 0 such that U ⊂ C. For
x ∈ U , ±x ∈ U ⊂ C. Hence ±f(x) < 1, i.e. |f(x)| < 1, which implies f is continuous at 0,
and so f ∈ X∗ by lemma 2.9.

ii) (Complex case) Consider X as a real vector space, by the first part there exists a
real continuous linear functional g on X such that g(x) < g(x0) for any x ∈ C. Setting
f(x) = g(x)− ig(ix), x ∈ X and we have <f = g.

Remark 4.10. From now on, we only state and prove the real version since complex version
follows similarly as in ii).

Theorem 4.10 (Hahn-Banach separation theorem). Let (X,P) be a locally convex space.
Let A,B be disjoint non-empty open convex sets of X.

i) If A is open, there exist f ∈ x∗, α ∈ R such that f(a) < α ≤ f(b), ∀a ∈ A, b ∈ B.

ii) If A is compact, B is closed, then there exists an f ∈ X∗ such that supA f < infB f .

Proof. i) Fix a0 ∈ A, b0 ∈ B. Let x0 = a0 − b0, C = A−B + x0 =
⋃
b∈B(A− b+ x0). Then

C is an open convex set and 0 ∈ C. Since A ∩ B = ∅, we have x0 6∈ C. Then by Theorem
4.9, we can find an f ∈ X∗ such that f(x) < f(x0) ∀x ∈ C, i.e.

f(a− b+ x0) < f(x0), ∀a ∈ A, b ∈ B. (4.21)

So f(a) < f(b) for all a ∈ A and b ∈ B. It follows that α = infB f exists. Since f(a0) < f(b0),
we have f 6= 0. Pick any z ∈ X such that f(z) > 0. Given any a ∈ A, as A is open, there
exists a δ > 0 such that (a+ δz) ∈ A. Hence, f(a) < f(a+ δz) ≤ α.

ii) For any a ∈ A, there exists an open neighborhood Ua of 0 such that (a + Ua) ∩ B = ∅
(since B is closed). There exists a balanced convex open neighborhood Va of 0 such that
Va + Va ⊂ Ua. {a + Va}a∈A is an open cover for A, so there exists a1, · · · , an ∈ A, n ∈ N
such that A =

⋃n
i=1(ai + Vaj). Define V =

⋂n
i=1 Vai which is an balanced convex open

neighborhood of 0, and we have (A + V ) ∩ B = ∅. Let a ∈ A be arbitrary, then there
exists a j such that a ∈ (aj + Vaj), so that (a + V ) ∈ (aj + Vaj + V ) ⊂ (aj + Uaj) and
(aj + Uaj) ∩B = ∅. Hence A+ V is an open convex set, and by i) there exist f ∈ X∗, β ∈ R
such that f(a+ v) < β ≤ f(b), ∀a ∈ A, v ∈ V , and b ∈ B.
In particular, f 6= 0, so there exists a z ∈ V such that f(z) > 0. Hence f(a) < β − f(z) for
all x ∈ A. Therefore, α = supA f < β. (Or f(a) < β, ∀a ∈ A, and supA f is attained.)

Theorem 4.11 (Mazur). Let X be a normed space, and C be a convex set in X. Then C
is weakly closed if and only if C is norm-closed. Hence for general convex sets C , we have
C
w

= C
‖·‖.
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Proof. (⇒) Clear.
(⇐) Let x ∈ X \ C. Apply theorem 4.10 ii) to A = {x}, B=C, and P = ‖ · ‖. So there exists
an f ∈ x∗ such that f(x) ≤ infC f = α. {z ∈ X : f(z) < α} is a weakly open set containing
x, which is disjoint from C. Thus X \ C is weakly open and then C is weakly closed.

Corollary 4.12. If xn
w−→ 0 in a normed space X, then for any ε > 0 , there exist n ∈ N,

ti ≥ 0 for i = 1, · · · , N , and
∑N

i=1 ti = 1, such that ‖
∑N

i=1 tixi‖ < ε.

Proof. Let C = conv{xi : i ∈ N} = {
∑n

i=1 tixi : n ∈ N, ti ≥ 0, ∀
∑n

i=1 ti = 1}. As xn
w−→ 0,

0 ∈ Cw
= C

‖·‖ by Theorem 4.11.

Theorem 4.13 (Banach-Alaoglu). In any normed space X, (BX∗ , x
∗) is compact.

Proof. For x ∈ X, let Kx = {λ : |λ| ≤ ‖x‖, λ is a scalar}. Set K =
∏

x∈X Kx with the
product topology. This set is compact by Tychonov theorem. Note that

K = {f : X → scalars : |f(x)| ≤ ‖x‖}. (4.22)

So BX∗ ⊂ K and BX∗ = {f ∈ K : f is linear}. The product topology on K is the smallest
topology on K such that πx : K → Kx is continuous for every x ∈ X. Note that πx(f) = f(x).
The weak-* topology on X∗ is the smallest topology on X∗ such that x̂|BX∗ is continuous for
every x ∈ X (here we use the identification X→̂X∗∗, with x̂|BX∗ = f(x). Hence (BX∗ , w

∗) is
a subspace of K, and it suffices to show BX∗ is closed in K. But

BX∗ ={f ∈ K : f(λx+ µy)− λf(x)− µf(y) = 0,∀x, y ∈ X,λ, µ are scalars} (4.23)

=
⋂
x,y∈X

λ, µ are scalars

{f ∈ K :
(
πλx+µy − πλ − πµ

)
(f) = 0} (4.24)

which is clearly closed.

Proposition 4.14. Let X be a normed space, and K be a compact Hausdorff space, then

1. X is separable ⇔ (BX∗ , w
∗) is metrizable.

2. C(K) is separable ⇔ K is metrizable.

Proof. 1. (⇒) Choose a dense subset {xn : n ∈ N} ⊂ X. Let σ = σ
(
BX∗ , {x̂|BX∗ : n ∈ N}

)
,

which is the smallest topology on BX∗ such that x∗ 7→ x∗(xn) is continuous for any n ∈ N.
So σ ⊂ w-* topology of BX∗ , which implies that the formal identity

i : (BX∗ , w
∗)→ (BX∗ , σ) (4.25)

is continuous. Since {xn : n ∈ N} is dense in X, they separate the points of BX∗ . By
Proposition 4.1, (BX∗ , σ) is metrizable. Moreover, i is a continuous bijection from a compact
space to a Hausdorff space, hence it is a homeomorphism.

2. (⇒) Let X = C(K) be separable, then by above result we see that (BX∗ , w
∗) is metrizable.

Define δ : K → (BX∗ , w
∗) which maps k to δk for k ∈ K, where δk(f) = f(k) for f ∈ C(K).
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δ is continuous since k 7→ δk(f) = f(k) is continuous for every f ∈ C(K). Since K is compact
and Hausdorff, it is also normal. By Uryson’s lemma, for any k 6= k′ in K, there exists an
f ∈ C(K) such that f(k) 6= f(k′), thus δk 6= δk if k 6= k′. Therefore, δ : K → δ(K) is a
continuous bijection from a compact space to a Hausdorff space. Then we see that K is
homeomorphic to its image in the metric space (BX∗ , w

∗) which implies K is metrizable.

2. (⇐) Since K is a compact metric space, K is separable. Let {kn : n ∈ N} be a dense set
in X. Define f0 = 1, fn(k) = d(k, kn) for k ∈ K and n ≥ 1. Let A be the algebra generated
by fn, n ≥ 0, that is,

A = span
{∏
n∈F

: F is a finite subset of {0, 1, 2, · · · }
}
. (4.26)

Then A is separable, 1 ∈ A, and A separates the points of K: ∀k 6= k′ ∈ K, ∃n ∈ N such that
d(k, kn) < d(k′, kn). By Stone-Weierstrass theorem, Ā = C(K), which implies that C(K) is
separable.

1. (⇐) Let K = (BX∗ , w
∗), then by part 2, C(K) is separable. Consider X ⊂ C(K) with the

identification x 7→ x̂
∣∣
K

defined by x̂
∣∣
K

(x∗) = x∗(x). This is well defined

‖x̂
∣∣
K
‖∞ = sup{|x∗(x) : x∗ ∈ BX∗} = ‖x‖. (4.27)

by Hahn-Banach theorem. Hence X is separable.

Remark 4.11. X is separable ⇒ X∗ is w-* separable, and X∗ = ∪∞n=1bBX∗ . ("⇐ is false in
general, e.g. X = l∞")

Remark 4.12. X is separable ⇒ X is w-separable. (If A ⊂ X, then spanA = spanwA) ⊃
Āw ⊃ Ā )

Proposition 4.15. Let X be a normed space. X∗ is separable if and only if (BX , w) is
metrizable.

Proof. (⇒)By previous proposition, (BX∗∗ , w
∗) = (BX∗∗ , σ(X∗∗, X∗)) is metrizable. Since

(Bx, w) is a subspace of (BX∗∗ , w
∗), it is metrizable.

(⇐) Assume that (Bx, w) is metrizable by metric d. For any weakly open neighborhood U of
0, there exists an n ∈ N such that B(0, 1

n
) = {x ∈ BX : d(x, 0) < 1

n
} ⊂ U . For every n, there

exist a finite set Fn ⊂ X∗, εn > 0, such that Un = {x ∈ BX : |X∗(x)| < εn,∀x∗ ∈ Fn}, and
Un ⊂ B(0, 1

N
). Let Z = span ∪n∈N Fn, then Z is separable. We will show Z = X∗.

Suppose not, then there exists an x∗ ∈ BX∗ with d(x∗, Z) = infz∈Z ‖x∗−z‖ > 1/2. Then there
exists an n ∈ N such that Un ⊂ {x ∈ BX : |x∗(x)| < 1/10} since {x ∈ BX : |x∗(x)| < 1/10} is
a weakly open neighborhood of 0 in BX . Now let Y = ∩y∗∈Fn ker y∗. If y ∈ BY , then y ∈ Un
since |x∗(y)| < 1/10. So ‖x∗|Y ‖ ≤ 1/10. By Hahn-Banach theorem, there exists a z∗ ∈ X∗
such that ‖z∗‖ ≤ 1/10 and z ∗ |Y = x∗|Y . Since

Y = ∩y∗∈Fn ker y∗ ⊂ ker(x∗ − z∗). (4.28)
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By lemma 4.3, (x∗ − z∗) ⊂ spann∈NFn ⊂ Z. Thus, d(x∗, Z) ≤ 1/10 which gives us a
contradiction.

Proposition 4.16. Let X be a normed space, K ⊂ X and (K,w) is compact. If X∗ is w-*
separable, then (K,w) is metrizable.

Note. If X is separable, then X∗ is w-* separable.

Proof. Let A be a countable subset of X∗ such that Aw
∗

= A∗. Then A separates the points
of X. By proposition 4.1, σ = σ(K,A) is metrizable. Since A ⊂ X∗, the formal identity

(K,w)→ (K, σ) (4.29)

is a continuous bijection from a compact space to a Hausdorff space, hence is a homeomorphism.

Theorem 4.17 (Goldstein). Let X be a normed space, then BX
w∗

= BX∗∗. Here we view
BX sitting inside BX∗∗.

Proof. Let K = BX
w∗ . Since BX ⊂ BX∗∗ and BX∗∗ is w-* closed, we have K ⊂ BX∗∗ .

Suppose K 6= BX∗∗ . Pick x∗∗ ∈ BX∗∗ \K. It is easy to check that K is compact. By theorem
4.10 (ii), there exists a w-* continuous linear functional x∗ ∈ X∗ such that

sup
z∗∗∈K

z∗∗(x∗) < x∗∗(x∗). (4.30)

Since K ⊃ BX ,
sup
z∗∗∈K

z∗∗(x∗) ≥ sup
z∗∗∈BX

x∗(x) = ‖x∗‖. (4.31)

But
x∗∗(x∗) ≤ ‖x∗∗‖ · ‖x∗‖ ≤ ‖x∗‖ (4.32)

which gives a contradiction.

Theorem 4.18. Let X be a Banach space, TFAE:

1. X is reflexive.

2. (BX , w) is compact.

3. X∗ is reflexive.

Proof. 1. ⇒ 2. Since X is reflexive, X = X∗∗, which implied that the weak topology on
X is the same as the w-* topology on X∗∗. Then (BX , w) = (BX∗∗ , w

∗) is compact by
Banach-Alaoglu theorem.

2.⇒ 1. The restriction of the w-* topology on X∗∗ to X is the weak topology on X. Since
BX is weakly compact, it is a w-* compact subset of BX∗∗ hence is w-* closed. By Goldstein’s
theorem, BX∗∗ = BX

w∗

= BX , which implies that X = X∗∗.
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1.⇒ 3. If X is reflexive, σ(X∗, X) = σ(X∗, X∗∗). So (BX∗ , w) = (BX∗ , w
∗), which is compact

by Banach-Alaoglu theorem. Then by "2.⇒ 1.", X∗ is reflexive.

3. ⇒ 1. If X∗ is reflexive, σ(X∗∗, X∗) = σ(X∗, X∗∗∗). BX is norm-closed in X∗∗ since X is
complete. So BX is weakly closed by Mazur’s theorem. Then BX is w-* closed in X∗∗. By
Goldstein’s theorem, BX∗∗ = BX

w∗

= BX and X is then reflexive.

Remark 4.13. 1.⇔ 3. has a easy direct proof.

Remark 4.14. If X is reflexive and separable, then (BX∗ , w) is a compact metric space.

Recall that we have shown if X is separable, then X ↪→ l∞ isometrically. Now we aim to
show that X ↪→ C[0, 1] isometrically.

Lemma 4.19. If K is a non-empty compact metric space, then K is a continuous image of
the Cantor set 4. Here 4 = {0, 1}N with the product topology. Note that 4 is a compact
metric space by proposition 4.1 and theorem 4.2.

Note. 4 is homeomorphic to

{
∞∑
n=1

(2εn)3−n : (εn)∞n=1 ∈ 4} ⊂ C[0, 1]. (4.33)

Theorem 4.20. Let X be a normed space. If X is separable, then X ↪→ C[0, 1] isometrically.

Proof. Let K = (BX∗ , w
∗), then K is a compact metric space. the map X → C(K) : x 7→ x̂|K

is an isomorphism into C(K). By lemma 4.19, there exists a continuous surjective map
φ : 4 → K, which yields an isometric isomorphism C(K)→ C(4) : f 7→ f ◦ φ into C(4),
where f ∈ C(K)
Finally, we have an isometric isomorphism C(4) → C[0, 1]: given g ∈ C[0, 1], thinking of
4 ⊂ C[0, 1], we extend g to the whole [0, 1] to a piecewise linear function.

5 The Krein-Milman theorem

6 Banach algebras

6.1 Elementary properties and examples

Let A be an algebra over R or C, i.e. a vector space with multiplication which satisfies

• (ab)c = a(bc);

• a(b+ c) = ab+ ac;

• (a+ b)c = ac+ bc;

• λ(ab) = λ(ab);
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for any scalar λ. An algebra A is both a ring and a vector space. The structure (A, ·) is a
semigroup. An algebra is commutative is its ring multiplication is commutative.

Definition 6.1. An (two sided) ideal I of an algebra A is a subset of A such that

• I is a vector subspace of A;

• AI ⊂ I and IA ⊂ I.

Definition 6.2. An algebra norm ‖ · ‖ on A is a norm such that

‖ab‖ ≤ ‖a‖ · ‖b‖ (6.1)

for all a, b ∈ A. The pair (A, ‖ · ‖) is a normed algebra.

Note. The multiplication is continuous: an → a, bn → b implies anbn → ab.

Definition 6.3. A Banach algebra(B.A.) is a complete normed algebra.

An algebra A is unital if there exist elements 1 (or 1A) such that 1 6= 0, 1a = a1 = a, ∀a ∈ A.
A unital normed algebra is a normed unital algebra such that ‖1‖ = 1. If ‖1‖ 6= 1, then
one can find an equivalent norm ||| · ||| such that |||1||| = 1, for instance,

|||a||| = sup{‖ba‖ : b ∈ A, ‖b‖ ≤ 1}. (6.2)

Definition 6.4. A unital Banach algebra is a complete unital normed algebra.

A homomorphism between algebras A, B is a linear map Φ : A → B such that Φ(ab) =
Φ(a)Φ(b), for all a, b ∈ A. If A,B are unital, then we say Φ is unital if Φ(1A) = 1B.
If A,B are normed algebras, a homomorphism Φ : A→ B may or may not be continuous.
However, by an isomorphism we mean a bijective homomorphism Φ : A → B such that
both Φ and Φ−1 are continuous.
From now on we assume our scalar field to be C.

Example 6.1. Let K be a compact, Hausdorff topological space. Then C(K) is a unital,
commutative Banach algebra with pointwise multiplication and sup-norm.

Example 6.2. The uniform algebras are closed subalgebra of C(K), which contain 1 and
separate the points of K. For example, let K = ∆{z ∈ C : |z| ≤ 1} the disc algebra, then

A(∆) = {f ∈ C(∆) : f |int∆ is analytic} (6.3)

is a uniform algebra. More generally, for a nonempty and compact space K ⊂ C, we have

P (K) ⊂ R(K) ⊂ O(K) ⊂ A(K) ⊂ C(K), (6.4)

where these are the closures in C(K) of the subalgebra of, respectively, polynomial functions,
ration functions without poles in K, functions that are analytic on an open neighborhood of
K, and A(K) = {f ∈ C(K) : f |int∆ is analytic}. We’ll use the fact that

R(K) = P (K)⇐⇒ C \K is connected (6.5)
A(K) = C(K)⇐⇒ intK = ∅. (6.6)
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Example 6.3. Let K be L1(R) with convolution as multiplication

f ∗ g =

∫ ∞
−∞

f(s)g(s− t)ds, (6.7)

then K is a non-unital commutative Banach algebra.

Example 6.4. Let X be a Banach space,

B(X) = {T : X → X,T is linear and bounded}, (6.8)

then B(X) is a unital Banach algebra under composition as multiplication and operator norm.
If dimX > 1, then B(X) is non-commutative.
An important special case: closed subalgebras of B(H), where H is a Hilbert space. For
example B(`n2 ) ∼= Mn(C).

6.2 Elementary constructions

• Every closed subalgebra of a Banach algebra is a Banach algebra. A unital subalgebra
of a unital algebra is a subalgebra containing the unit.

• Unitization Let A be a complex algebra. Let A+ = A⊕ C with multiplication

(x, λ)(y, µ) = (xy + λy + µx, λµ). (6.9)

Then A+ is a unital algebra with identity 1A+ = (0, 1). If A is a normed algebra, then
so is A+ with norm ‖(x, λ)‖ = ‖x‖+ |λ|. Note that ‖1‖ = 1.

A is identified with {(x, 0) : x ∈ A} which is a closed ideal of A+. A+ is complete if
and only if A is complete.

• Ideals If I is an ideal of a normed algebra A, then so is Ī. If I is a closed ideal of A,
then A/I is a normed algebra. If A is a Banach algebra. and I is a proper and closed
ideal of A, then A/J is a unital normed algebra. (‖1 + I‖ = 1 will follow from lemma 1
below.)

• Completeion Every normed algebra has a completion which is a Banach algebra. Let
X = Ã be the completion of A as a Banach space. For a ∈ A, La(b) = ab for any b ∈ A.
We can extend La uniquely to a bounded linear operator L̃a on X. It’s easy to prove
that a 7→ L̃a is an isometric isomorhpism of A onto a subalgebra of Banach algebra
B(X). Take the closure of that subalgebra in B(X) we can get a completion of A.

6.3 Group of units and spectrum

Lemma 6.1. Let A be a unital Banach algebra and x ∈ A. If ‖1 − x‖ < 1, then x is
invertible.
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Proof. Let x = 1− h, where h = 1− x. Note that ‖h‖ ≤ 1.

∞∑
n=0

‖hn‖ ≤
∞∑
n=1

‖h‖n ≤ 1

1− ‖h‖
<∞, (6.10)

so s =
∑∞

n=1 h
n converges and xs = (1− b)

∑∞
n=1 h

n = 1. Similarity we have sx = 1.

For a unital algebra A, let G(A) be the group of invertible elements of A.

Definition 6.5. Let A be a unital algebra, x ∈ A. The spectrum of x in A is σA(x) =
σ(x) = {λ ∈ C|λ1− x 6∈ G(A)}.

If A is non-unital, let σA(x) = σA+(x).

Example 6.5. Let A = Mn(C), then σA(x) = set of eigenvalues of x.

Example 6.6. Let A = C(K), where K is compact and Hausdorff, then σA(f) = f(K).

Theorem 6.2. If A is a Banach algebra, then σA(x) is a non-empty, compact set of {λ ∈
C : ‖λ‖ ≤ ‖x‖} for any x ∈ A.

Proof. Without loss of generality, we can assume A is unital. Let x ∈ A, if λ ∈ C and
|λ| > ‖x‖, then ‖x

λ
‖ < 1, so 1− x

λ
∈ G(A) by lemma 1. So λ1− x ∈ G(A) and λ 6∈ G(A).

The function λ 7→ λ1−x : C 7→ A is continuous. σA(x) = inverse image of the closed set A \
G(A) by Corollary 2.
Define f : C \ σA(x) 7→ A by f(λ) = (λ1− x)−1.

f(λ)− f(µ) =(λ1− x)−1 − (µ1− x)−1 (6.11)
=(µ1− x)−1[(µ1− x)− (λ1− x)](λ1− x)−1 (6.12)
=(µ− λ)f(λ)f(µ). (6.13)

Hence
f(λ)− f(µ)

λ− µ
= −f(λ)f(µ) (6.14)

which converges to −f(λ)2 as µ → λ. Since f is continuous by Corollary 2, we get f is
analytic.
If |λ| > ‖x‖, then

‖(λ1− x)−1‖ = ‖1

λ
(1− x

λ
)−1‖ ≤ 1

|λ|
· 1

1− ‖x‖|λ|
=

1

|λ| − ‖x‖
(6.15)

which tends to 0 as λ→∞. (by lemma 1)
If σA(x) = ∅, then f is analytic on C, bounded ( f(λ)→ 0as|λ| → ∞). Hence by Liouville’s
theorem, f is a constant function and f ≡ 0, which gives a contradiction.

28



Functional Analysis 8 C∗ ALGEBRAS

Example 6.7. Let A be an algebra of complex valued functions on a set K. Assume A is a
Banach algebra in some norm ‖ · ‖. For f ∈ A, x ∈ K, if f(x) 6= 0, then f(x) ∈ σA(x). By
Theorem 3, |f(x)| ≤ ‖f‖, so A ⊂ l∞(K). Also, ‖f‖∞ = supK |f | ≤ ‖f‖.

Corollary 6.3 (Gelfand-Mazur). If A is a unital normed complex division algebra, then
A ∼= C.

6.4 Commutative Banach algebra

7 Holomorphic functional calculus

8 C∗ algebras
A *-algebra is a (complex) algebra A with an involution, i.e. a map ∗ : A→ A such that

• (λx+ µy)∗ = λ̄x∗ + µ̄y∗,

• (xy)∗ = y∗x∗,

• x ∗ ∗ = x, for every x, y ∈ A and λ, µ are scalars.

Note that if A is unital, then 1∗ = 1.

Definition 8.1. A C∗ algebra is a Banach algebra with an involution such that ‖xx∗‖ = ‖x‖2,
for every x ∈ A.

Note that if A is unital, then ‖1‖ = 1.

Example 8.1. C(K) is a C∗ algebra with involution f ∗(x) = f(x), where K is compact and
Hausdorff.

Example 8.2. B(H) is a C∗ algebra with involution T∗ = adjoint operator of T , where H
is a Hilbert space.

Example 8.3. A closed, *-subalgebra B of a C∗ algebra is a C∗ algebra. So all the closed
*-subalgebra (C∗ subalgebra) of B(H), are C∗ subalgebras.
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