qze@math.upenn.edu
Geometric ${ }^{\text {Math }}{ }^{600}$ ANALYSIS I
Prof. Wolfgang Ziller • Fall 2015 • University of Pennsylvania

Last Revision: November 29, 2015

Table of Contents

1 Manifolds 1
2 Integral curves and flows 1
2.1 Integral curves . 1
2.2 Lie derivatives . 4
2.3 Distributions . 6

3 Lie groups and Lie algebras 6
3.1 Lie groups . 6
3.2 Lie algebras . 8
3.3 Homomorphisms . 11

4 Differential forms 14
5 Integration on manifolds 14
5.1 Integration . 14
5.2 Stokes' theorem . 16

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 Manifolds

2 Integral curves and flows

2.1 Integral curves

Let M be a manifold, and X is a smooth vector field on M. An integral curve of X is a differentiable curve $\gamma:(-\epsilon, \epsilon) \rightarrow M$ such that

$$
\begin{equation*}
\gamma^{\prime}(t)=X(\gamma(t)) \in T_{\gamma(t)} M \tag{2.1}
\end{equation*}
$$

for each t in the domain.
Let $p \in M$, and (U, ϕ) be a chart containing p , so $\phi(p)=\left(x_{1}, \cdots, x_{n}\right)$. Let Y be a C^{∞} vector field on M. Let $\gamma:(-\epsilon, \epsilon) \rightarrow \mathbb{R}^{n}$ be an integral curve, $\gamma(t)=\left(\gamma_{1}(t), \cdots, \gamma_{n}(t)\right)$. We can write $Y(p)=\left(Y_{1}(p), \cdots, Y_{n}(p)\right.$. By using $\gamma^{\prime}(t)=X(\gamma(t))$ we get the following system of ODEs:

$$
\left\{\begin{array}{c}
\gamma_{1}^{\prime}(t)=Y_{1} \circ\left(\gamma_{1}(t), \cdots, \gamma_{n}(t)\right) \tag{}\\
\gamma_{2}^{\prime}(t)=Y_{2} \circ\left(\gamma_{1}(t), \cdots, \gamma_{n}(t)\right) \\
\cdots \\
\gamma_{n}^{\prime}(t)=Y_{n} \circ\left(\gamma_{1}(t), \cdots, \gamma_{n}(t)\right)
\end{array}\right.
$$

which is a system of n first order ODEs (usually nonlinear).
Theorem 2.1. Let X be a smooth vector field on a manifold M. For any $p \in M$ there exists $a(p), b(p) \in \mathbb{R} \cup\{ \pm \infty\}$ and a smooth curve

$$
\begin{equation*}
\gamma_{p}:(a(p), b(p)) \rightarrow M \tag{2.2}
\end{equation*}
$$

such that

- $o \in(a(p), b(p))$, and $\gamma_{p}(0)=p$.
- γ_{p} is an integral curve of X.
- If $\mu:(c, d) \rightarrow M$ is a smooth curve satisfying the previous two conditions, then $(c, d) \subset(a(p), b(p))$. Moreover, $\mu=\left.\gamma_{p}\right|_{(c, d)}$.

Corollary 2.2. Let X be a vector field on M. For any $p \in M$, there exists a neighborhood V of p and $a>0$ such that $\Phi:(-a, a) \times V \rightarrow M$ is a C^{∞} map, and $\Phi(t, p)=\gamma_{p}(t)$.

Definition 2.1. For an integral curve $\gamma_{p}(a, b) \rightarrow M$, we define the flow of γ

$$
\begin{equation*}
\Phi_{t}(p)=\gamma_{p}(t) \tag{2.3}
\end{equation*}
$$

Example 2.1. Let $Z(a)=a^{2}$ be a vector field on \mathbb{R}. Then we have $\gamma^{\prime}=Z \circ \gamma=\gamma^{2}$. Solving this ODE gives $\gamma(t)=1 /(-t+c)$, so $\gamma(0)=1 / c=p$. The flow is given by

$$
\begin{equation*}
\Phi_{t}(p)=\frac{1}{-t+1 / p} \tag{2.4}
\end{equation*}
$$

Example 2.2. Let $Z(a)=a^{2 / 3}$. Now we don't have uniqueness. For example, take $\gamma(0)=0$, then we have two solutions $\gamma(t)=0$ and $\gamma(t)=(1 / 27) t^{3}$.

Corollary 2.3. Let X be a vector field on M. For any $p \in M$, there exists a neighborhood V of p and $a>0$ such that $\Phi:(-a, a) \times V \rightarrow M$ is a C^{∞} map, and $\Phi(t, p)=\gamma_{p}(t)$.

Proposition 2.4 (Group law). Let V and $a>0$ be as in above, and $|t|,|s|,|t+s|<a$, then we have

$$
\begin{equation*}
\Phi_{s} \circ \Phi_{t}=\Phi_{s+t} \tag{2.5}
\end{equation*}
$$

at q if $q \in V$ and $\Phi_{t}(q) \in V$.
Proof. Fixed t. Define

$$
\begin{align*}
\beta(s) & =\Phi_{s+t}(q) \tag{2.6}\\
\delta(s) & =\Phi_{s} \circ \Phi_{t}(q) . \tag{2.7}
\end{align*}
$$

We will show that both of them are integral curves with the same initial conditions. Put $s=0$,

$$
\begin{align*}
\beta(0) & =\Phi_{t}(q) \tag{2.8}\\
\delta(0) & =\Phi_{0} \circ \Phi_{t}(q)=\Phi_{t}(q) \tag{2.9}
\end{align*}
$$

Note that the second equality follows from $\Phi_{0}(p)=\gamma_{p}(0)=p$.

$$
\begin{align*}
\beta^{\prime}\left(s_{0}\right) & =\left.\frac{d}{d s}\right|_{s=s_{0}} \beta(s) \tag{2.10}\\
& =\left.\frac{d}{d s}\right|_{s=s_{0}} \Phi_{s+t}(q) \tag{2.11}\\
& =X\left(\Phi_{s_{0}+t}(q)\right)=X\left(\gamma_{\Phi_{t}(q)}\left(s_{0}\right)\right) . \tag{2.12}
\end{align*}
$$

And

$$
\begin{align*}
\delta^{\prime}(s) & =\left.\frac{d}{d s}\right|_{s=s_{0}} \delta(s) \tag{2.13}\\
& =\left.\frac{d}{d s}\right|_{s=s_{0}} \Phi_{s} \circ \Phi_{t}(q) \tag{2.14}\\
& =X\left(\Phi_{s_{0}}\left(\Phi_{t}(q)\right)\right)=X\left(\gamma_{\Phi_{t}(q)\left(s_{0}\right)}\right) . \tag{2.15}
\end{align*}
$$

Definition 2.2. A vector field is complete if all its integral curves are defined for all $t \in \mathbb{R}$.
Theorem 2.5. Let M be a manifold and X be a smooth vector field on M. If M is compact, or X has compact support, then X is complete.

Proof. Suppose X has compact support, then there exists an open cover $\left\{U_{i}\right\}(i=1, \cdots, k)$ of the support of X, with $a_{i}>0$ such that $\Phi_{i}:\left(-a_{i}, a_{i}\right) \rightarrow M$ is the flow on each U_{i}. Let $a=\min _{i}\left\{a_{i}\right\}$. We have that each $\Phi_{i}:(-a, a) \rightarrow M$ is well defined. Φ_{i} and Φ_{j} agree on $U_{i} \cap U_{j}$ by the uniqueness of integral curves. Since X vanishes, every integral curve starting outside the support is constant and thus can be defined on all of t. Hence X is complete.

If a vector field X is complete, then $\Phi_{t}: M \rightarrow M$ is a diffeomorphism. We have

$$
\begin{align*}
\Phi_{0} & =I d \tag{2.16}\\
\Phi_{t} \circ \Phi_{s} & =\Phi_{t+s} \tag{2.17}\\
\left(\Phi_{t}\right)^{-1} & =\Phi_{-t} . \tag{2.18}
\end{align*}
$$

Proposition 2.6. An one parameter family of diffeomorphism on M is a smooth map $\Phi_{t}: M \rightarrow M$ such that $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$ and $\Phi_{0}=I d$. This defines a vector field on M with flow Φ_{t}.

Proof. Let $q \in M$. Define $Y(q)=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}(q)$. Then Φ_{t} is the flow of $\gamma_{q}(t)=\Phi_{t}(q)$, and $\gamma_{q}(t)^{\prime}=Y \circ \gamma_{q}(t)$ since

$$
\begin{align*}
\left.\frac{d \gamma}{d t}\right|_{t=t_{0}} \gamma_{q}(t) & =\left.\frac{d \gamma}{d t}\right|_{t=t_{0}} \Phi_{q}(t) \tag{2.19}\\
& =\left.\frac{d \gamma}{d s}\right|_{s=0} \Phi_{t_{0}+s}(q) \tag{2.20}\\
& =\left.\frac{d \gamma}{d s}\right|_{s=0} \Phi_{s} \circ \Phi_{t_{0}}(q) \tag{2.21}\\
& =Y\left(\Phi_{t_{0}}(q)\right)=Y\left(\gamma_{q}\left(t_{0}\right)\right) . \tag{2.22}
\end{align*}
$$

2.2 Lie derivatives

Let $f: M^{n} \rightarrow N^{n}$ be a diffeomorphism, and X be a vector field on X. Then we can get a push forward vector field $f_{*}(X)$ on N by setting

$$
\begin{equation*}
\left.f_{*}(X)\right|_{q}=\left.d f\right|_{f^{-1}(q)}\left(X_{f^{-1}(q)}\right) \in T_{q} N \tag{2.23}
\end{equation*}
$$

for some $q \in N$.
If Y is a vector field on N, then define the pull back

$$
\begin{equation*}
\left.f^{*}(Y)\right|_{p}=\left.d\left(f^{-1}\right)\right|_{f(p)}\left(Y_{f(p)}\right) \in T_{p} M \tag{2.24}
\end{equation*}
$$

for $p \in M$.
Exercise 2.1. Let f, X, Y be as above, and $g \in C^{\infty}(N)$. Show that

$$
\begin{equation*}
f_{*}(X) g=X(g \circ f) \circ f^{-1} . \tag{2.25}
\end{equation*}
$$

Similarly, let $h \in C^{\infty}(M)$. We have

$$
\begin{equation*}
f^{*}(Y) h=X\left(h \circ f^{-1}\right) \circ f \tag{2.26}
\end{equation*}
$$

Lemma 2.7. If X is a smooth vector field on M with $X_{p} \neq 0$, then there exists a coordinate (U, x) at p such that $X_{q}=\left.\frac{\partial}{\partial x_{1}}\right|_{q}$ for all $q \in U$.

Proof. Choose a coordinate (V, y) containing p such that $y_{1}(p)=0$ and

$$
\begin{equation*}
\left.\frac{\partial}{\partial y_{1}}\right|_{p}=X_{p} \tag{2.27}
\end{equation*}
$$

Let Φ_{t} be the flow of X. Define $\Psi: W \subset \mathbb{R}^{n} \rightarrow M$ by

$$
\begin{equation*}
\Psi\left(t, \cdots, a_{n}\right)=\Phi_{t}\left(y^{-1}\left(0, a_{2}, \cdots, a_{n}\right)\right) \tag{2.28}
\end{equation*}
$$

Then we have

$$
\begin{align*}
d \Psi\left(\left.\frac{\partial}{\partial r_{1}}\right|_{0}\right) f & =\left.\frac{d}{d t}\right|_{t=0}\left(f \circ \Phi_{0}\left(y^{-1}\left(0, a_{2}, \cdots, a_{n}\right)\right)\right) \tag{2.29}\\
& =\left.X_{\Phi_{t}\left(y^{-1}\left(0, a_{2}, \cdots, a_{n}\right)\right)}\right|_{t=0}(f) \tag{2.30}\\
& =\left.\frac{\partial}{\partial y_{1}}\right|_{p}(f) \tag{2.31}
\end{align*}
$$

and

$$
\begin{equation*}
d \Psi\left(\left.\frac{\partial}{\partial r_{i}}\right|_{0}\right)=\left.\frac{\partial}{\partial y_{i}}\right|_{p} \tag{2.32}
\end{equation*}
$$

for $f \in C^{\infty}(M)$. Note that $\Psi\left(0, \cdots, a_{n}\right)=y^{-1}\left(\left(0, \cdots, a_{n}\right)\right)$. Hence $\left.d \Psi\right|_{t=0}$ is invertible hence an isomorphism. By Inverse function theorem, there exists an open $U \subset \Psi(W)$ such that $\Psi: U \rightarrow \Psi(U)$ is a diffeomorphism. Therefore $x=\Psi^{-1}$ is a coordinate function. Let $q \in U$ and $x(q)=\left(a_{1}, \cdots, a_{n}\right)$.

$$
\begin{align*}
X_{q}=X\left(\Psi\left(\left(a_{1}, \cdots, a_{n}\right)\right)\right) & =\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}\left(\Psi\left(\left(a_{1}, \cdots, a_{n}\right)\right)\right) \tag{2.33}\\
& =\left.\frac{d}{d t}\right|_{t=0} \Phi_{t} \circ \Phi_{a_{1}}\left(y^{-1}\left(0, a_{2}, \cdots, a_{n}\right)\right) \tag{2.34}\\
& =\left.\frac{d}{d t}\right|_{t=0} \Phi_{t+a_{1}}\left(y^{-1}\left(0, a_{2}, \cdots, a_{n}\right)\right) \tag{2.35}\\
& =\left.\frac{d}{d t}\right|_{t=0} \Psi\left(\left(a_{1}+t, a_{2}, \cdots, a_{n}\right)\right) \tag{2.36}\\
& =\left.\frac{\partial}{\partial x_{1}}\right|_{q} \tag{2.37}
\end{align*}
$$

as required.
Definition 2.3. Let X, Y be vector fields on M, and X has flow Φ_{t}. Then we define $L_{X} Y$ to be the Lie derivative of Y with respective to X at p which has the expression

$$
\begin{equation*}
\left(L_{X} Y\right)_{p}=\lim _{p \rightarrow 0} \frac{\Phi_{t}^{*}\left(Y_{\Phi_{t}(p)}\right)-Y_{p}}{t}=\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{t}^{*}(Y)_{\Phi_{t}(p)}\right) \tag{2.38}
\end{equation*}
$$

Exercise 2.2. Show that $L_{X}(f)=X(f)$.
Theorem 2.8. Let X be a vector field on M with flow Φ_{t}, and Y be another vector field on X. Let $p \in M$, then

$$
\begin{equation*}
[X, Y](p)=\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{t}^{*}\left(Y_{\Phi_{t}(p)}\right)\right)=\left.\frac{d}{d t}\right|_{t=0}\left(d\left(\Phi_{-t}\right)\left(Y \circ \Phi_{t}(p)\right)\right) \tag{2.39}
\end{equation*}
$$

Proof. WLOG, assume that $X_{p} \neq 0$. Choose coordinate (U, z) containing p such that $X=\frac{\partial}{\partial z_{1}}$ on U. Let Y be a vector field on X, so $Y=\sum_{i} b_{i} \frac{\partial}{\partial z_{i}}$ on U. Let Φ_{t} be the flow of X on U. Then

$$
\begin{equation*}
\Phi_{t} \circ z^{-1}\left(a_{1}, \cdots, z_{n}\right)=z^{-1}\left(a_{1}+t, a_{2}, \cdots, z_{n}\right) \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(\Phi_{-t}\right)\left(\left.\frac{\partial}{\partial z_{i}}\right|_{q}\right)=\left.\frac{\partial}{\partial z_{i}}\right|_{\Phi_{-t}(q)} \tag{2.41}
\end{equation*}
$$

for some $q \in U$ and $z(q)=\left(a_{1}, \cdots, z_{n}\right)$. Hence,

$$
\begin{equation*}
d\left(\Phi_{-t}\right)\left(\left.Y\right|_{\Phi_{t}(p)}\right)=\left.\sum_{i=1}^{n} b_{i}\left(z^{-1}(t, 0, \cdots, 0)\right) \frac{\partial}{\partial z_{i}}\right|_{p} \tag{2.42}
\end{equation*}
$$

Now

$$
\begin{align*}
\left.\left.\frac{d}{d t}\right|_{t=0} d\left(\Phi_{-t}\right)\left(Y \circ \Phi_{t}(p)\right)\right) & =\left.\sum_{i=1}^{n} \frac{d}{d t}\right|_{t=0}\left(\left.b_{i}\left(z^{-1}(t, 0, \cdots, 0)\right) \frac{\partial}{\partial z_{i}}\right|_{p}\right) \tag{2.43}\\
& =\left.\sum_{i=1}^{n} \frac{\partial b_{i}}{\partial z_{1}} \frac{\partial}{\partial z_{i}}\right|_{p}=\left.[X, Y]\right|_{p} \tag{2.44}
\end{align*}
$$

Remark 2.1. Let $f: M \rightarrow N$ be a diffeomorphism, and Y is a vector field on N. Then $f^{*}(Y)$ is a vector field on M. Let $p \in M$, we have $\left.f^{*}(Y)\right|_{p}=d f^{-1} Y_{f(p)}$. Note that $d f\left(f^{*}(Y)\right)=Y$.

Exercise 2.3. If Ψ_{t} is the flow of Y on N and $f: M \rightarrow N$ is a diffeomorphism, then the flow of $f^{*}(Y)$ is $f^{-1} \circ \Psi_{t} \circ f$.
Similarly, if Φ_{t} is the flow of X on M, then the flow of $f_{*}(X)$ is $f \circ \Phi_{t} \circ f^{-1}$.
Theorem 2.9. If Φ_{t} is a flow of X and Ψ_{t} is a flow of Y, then $[X, Y]=0$ if and only if

$$
\begin{equation*}
\Phi_{t} \circ \Psi_{s}=\Psi_{s} \circ \Phi_{t} \tag{2.45}
\end{equation*}
$$

for all t, s. Equivalently, we have

$$
\begin{equation*}
\Phi_{t} \circ \Psi_{s} \circ \Phi_{-t} \circ \Psi_{-s}=I d \tag{2.46}
\end{equation*}
$$

Corollary 2.10. Let $c(t)=\Psi_{-t} \circ \Phi_{-t} \circ \Psi_{t} \circ \Phi_{t}(q)$, then $\left.c(0)=q, c^{\prime}(0)=\right)$, and $c^{\prime \prime}(0)=\frac{1}{2}[X, Y]$.
Theorem 2.11. Given vector fields X_{1}, \cdots, X_{n} on M which are linearly independent for every $p \in M$. Then there exists a coordinate (U, x) containing p such that $X(q)=\left.\frac{\partial}{\partial x_{i}}\right|_{q}$ for all $q \in U$ if any only if $\left[X_{i}, X_{j}\right]=0$.

2.3 Distributions

3 Lie groups and Lie algebras

3.1 Lie groups

Definition 3.1. A Lie group is a smooth manifold which also has the group structure and the map $G \times G \rightarrow G$ defined by $(a, b) \rightarrow a b^{-1}$ is smooth for $a, b \in G$.

Example 3.1. $\left(\mathbb{R}^{n},+\right)$ is clearly a Lie group.
Example 3.2. $G L(n)=\left\{A \in M_{n}(\mathbb{R}): \operatorname{det} A \neq 0\right\}$ as an open subset of $\mathbb{R}^{n^{2}}$ is a Lie group.
Example 3.3. $S L(n, \mathbb{R}), O(n), S O(n)$ are all Lie groups (are embedded submanifolds of $\mathbb{R}^{n^{2}}$.)

Theorem 3.1. If G is a Lie group, and $H \subset G$ is a subgroup, then H is a Lie group.

Corollary 3.2. Any subgroups of $G L(n, \mathbb{R})$ defined by equations are Lie groups. For example,

$$
\begin{align*}
O(n) & =\left\{A \in G L(n, \mathbb{R}): A A^{T}=I\right\}, \tag{3.1}\\
U(n) & =\left\{A \in G L(n, \mathbb{C}): A \bar{A}^{T}=I\right\}, \tag{3.2}\\
S U(n) & =\{A \in U(n): \operatorname{det} A=1\} . \tag{3.3}
\end{align*}
$$

We call the subgroups of $G L(n, \mathbb{R})$ by matrix groups.
Definition 3.2. The quaternion \mathbb{H} is a four dimensional vector space defined by

$$
\begin{equation*}
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\} \tag{3.4}
\end{equation*}
$$

with relations $i^{2}=j^{2}=k^{2}=i j k=-1$. Since $-1=i j k$, we have

$$
\begin{align*}
-k & =i j k k=i j\left(k^{2}\right)=i j(-1), \tag{3.5}\\
k & =i j . \tag{3.6}
\end{align*}
$$

All the other possible products can be determined by similar methods, resulting in

$$
\begin{align*}
& i j=k, j i=-k, \tag{3.7}\\
& j k=i, k j=-i, \tag{3.8}\\
& k i=j, i k=-j . \tag{3.9}
\end{align*}
$$

The conjugate of $q=a+b i+c j+d k \in \mathbb{H}$ is $\bar{q}=a-b i-c j-d k$. By calculation we have $q \bar{q}=a^{2}+b^{2}+c^{2}+d^{2}$. Moreover, if $q_{1}, q_{2} \in \mathbb{H}$, then $\left|q_{1} \cdot q_{2}\right|=\left|q_{1}\right| \cdot\left|q_{2}\right|$.

Let $G L(n, \mathbb{H})$ be $n \times n$ matrices over \mathbb{H} which have inverses. In this case, $\operatorname{det} A B$ may not equals to $\operatorname{det} A \operatorname{det} B$ due to non-commutitivity of \mathbb{H}. We define $S p(n)=\left\{A \in G L(n, \mathbb{H}): A \bar{A}^{T}=I\right\}$ to be a subgroup of $G L(n, \mathbb{H})$.
If $A \in U(n)$, then there exists $B \in U(n)$ such that

$$
\begin{equation*}
B A B^{-1}=\operatorname{diag}\left(z_{1}, \cdots, z_{n}\right),\left|z_{k}\right|=1 \tag{3.10}
\end{equation*}
$$

If $A \in O(n), A$ may not be diagonalizable. But there exists some $B \in O(n)$ such that we can write

$$
B A B^{-1}=\left(\begin{array}{c|c|cc}
R^{\theta_{1}} & 0 & 0 & \cdots \tag{3.11}\\
\hline 0 & R^{\theta_{2}} & 0 & \cdots \\
\hline 0 & a_{i 2} & \ddots & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where $R^{\theta_{i}}$ is either ± 1 or the usual rotation

$$
R^{\theta_{i}}=\left(\begin{array}{cc}
\cos \theta_{i} & \sin \theta_{i} \tag{3.12}\\
-\sin \theta_{i} & \cos \theta_{i}
\end{array}\right) .
$$

Exercise 3.1. For $A \in S p(n)$, does there exist $B \in S p(n)$ such that $B A B^{-1}=\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right)$ for $q_{i} \in \mathbb{H}$ and $\left|q_{i}\right|=1$?

Theorem 3.3 (Hilbert's 5th problem). Suppose G is a topological group, i.e. G is both a group and topological manifold, and the map $G \times G \rightarrow G$ defined by $(a, b) \rightarrow a b^{-1}$ is continuous, then G is a Lie group.

Theorem 3.4. Assume G is a C^{2} Lie group, then G has a unique analytic structure.

3.2 Lie algebras

Let G be a Lie group and $g \in G$. The left translation by g is a map $L_{g}: G \rightarrow G$ defined by $L_{g}(h)=g h$, for any $h \in G . L_{g}$ is in fact a diffeomorphism on G, and we have $\left(L_{g}\right)^{-1}=L_{g^{-1}}$, $L_{g} \circ L_{h}=L_{g h}$. Similarly, we can define the right translation $R_{g}: G \rightarrow G$ by $R_{g}(h)=h g$. Note that $L_{g} \circ R_{g^{-1}}$ is the conjugate map.

Definition 3.3. Let X be a vector field on a Lie group G. X is called left invariant if it is smooth and $L_{g_{*}} X=X$, that is,

$$
\begin{equation*}
\left(d L_{g}\right)_{h}(X(h))=X(g h) \tag{3.13}
\end{equation*}
$$

for any $g, h \in G$.
If X and Y are left invariant, then $[X, Y]$ is also left invariant. Since X and $L_{g_{*}} X$ are L_{g}-related,

$$
\begin{equation*}
L_{g_{*}}([X, Y])=\left[L_{g_{*}}(X), L_{g_{*}}(Y)\right] . \tag{3.14}
\end{equation*}
$$

Definition 3.4. Let V be a vector space, then $\mathfrak{g}=(V,[]$,$) is called a Lie algebra, if the$ bracket [,]: $V \times V \rightarrow V$ satisfies

1. $[v, w]=-[w, v]$. (anti-commutativity)
2. [,] is bilinear.
3. $[[v, w], z]+[[w, z], v]+[[z, v], w]=0$. (Jabobi identity)
for all $v, w, z \in V$.
Example 3.4. The euclidean space \mathbb{R}^{3} with the cross product as bracket is a Lie algebra.
Example 3.5. $M_{n}(\mathbb{R})$ is a Lie algebra with the bracket

$$
\begin{equation*}
[A, B]=A B-B A \tag{3.15}
\end{equation*}
$$

for $A, B \in M_{n}(\mathbb{R})$.
Example 3.6. Let X be the collection of C^{∞} vector fields on M, then X is an infinite dimensional Lie algebra.

Theorem 3.5 (Ado). If $\mathfrak{g}=(V,[]$,$) is a finite dimensional Lie algebra, then there exists a$ subalgebra of $M_{n}(\mathbb{R})$ that is isomorphic to \mathfrak{g}.

If G is a Lie group, then the set of left invariant vector fields form a Lie algebra.

Theorem 3.6. Let G be a Lie group. For each $v \in T_{e} G$, there exists a unique left invariant vector field X such that $X(e)=v$. Hence the dimension of left invariant vector fields on G equals the dimension of G. In fact, $X \rightarrow X(e)$ is an isomorphism.

Proof. Let $v \in T_{e} G$. Define $X(g)=\left(d L_{g}\right)_{e}(v)$. We need to show that X is left invariant and smooth. Since

$$
\begin{align*}
\left(d L_{g}\right)_{h}(X(h)) & =\left(d L_{g}\right)_{h}\left(\left(d L_{h}\right)_{e}(v)\right) \tag{3.16}\\
& =\left(d L_{g} h\right)_{e}(v)=X(g h), \tag{3.17}
\end{align*}
$$

Hence X is left invariant. Then we need show X is a smooth vector field. It suffices to show $X f$ is smooth whenever $f \in C^{\infty}(G)$. Let $\gamma:(-\epsilon, \epsilon) \rightarrow G$ be a smooth curve such that $\gamma(0)=e, \gamma^{\prime}(0)=v$. Then we have

$$
\begin{align*}
X f(g) & =\left(d L_{g}\right)_{e}(v) f=v\left(f \circ L_{g}\right) \tag{3.18}\\
& =\gamma^{\prime}(0)\left(f \circ L_{g}\right) \tag{3.19}\\
& =\left.\frac{d}{d t}\right|_{t=0}\left(f \circ L_{g} \circ \gamma(t)\right) . \tag{3.20}
\end{align*}
$$

We can define $\phi:(-\epsilon, \epsilon) \times G \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\phi(t, g)=f \circ L_{g} \circ \gamma(t) \tag{3.21}
\end{equation*}
$$

Then we see that $X f(g)=\frac{\partial \phi}{\partial t}(0, g)$. Since f, γ, and the left multiplication L_{g} are all smooth, it follows that $\frac{\partial \phi}{\partial t}(0, g)$ is smooth.
The injectivity of $X \rightarrow v \in \mathfrak{g}$ is clear. Hence the set of left invariant vector fields on G is isomorphic to $\mathfrak{g}=T_{e} G$.

Proposition 3.7. Let $\mathfrak{g l}(n, \mathbb{R})=T_{e}(G L(n, \mathbb{R}))$, then $\mathfrak{g l}(n, \mathbb{R})=M_{n}(\mathbb{R})$ with bracket $[A, B]=$ $A B-B A$ for $A, B \in \mathfrak{g l}(n, \mathbb{R})$.

Proof. Let $X \in T_{e}(G L(n, \mathbb{R})) \simeq M_{n}(\mathbb{R})$, and \tilde{X} be the induced left invariant vector field of X on $G L(n, \mathbb{R})$. Let $A \in G L(n, \mathbb{R})$. Then

$$
\begin{equation*}
\tilde{X}(A)=\left(d L_{A}\right)_{e} X=A \cdot X \tag{3.22}
\end{equation*}
$$

Let $x_{i j}$ be coordinate functions in $M_{n}(\mathbb{R})$, then $x_{i j}(A)=A_{i j}$. Since \tilde{X} is a vector field, we can write it as

$$
\begin{equation*}
\tilde{X}=\sum \tilde{X}\left(x_{i j}\right) \frac{\partial}{\partial x_{i j}} \tag{3.23}
\end{equation*}
$$

Note that

$$
\begin{align*}
\tilde{X}\left(x_{i j}(A)\right) & =\left(d x_{i j}\right)_{A}(\tilde{X}(A)) \tag{3.24}\\
& =x_{i j}(\tilde{X}(A))=(A X)_{i j} \tag{3.25}
\end{align*}
$$

Hence we have that $\tilde{X}(e)=X, \tilde{X}(A)=\sum(A X)_{i j} \frac{\partial}{\partial x_{i j}}$. Let $Y \in T_{e}(G L(n, \mathbb{R}))$ and \tilde{Y} be the
corresponding induced left invariant vector field. Then

$$
\begin{align*}
{[\tilde{X}, \tilde{Y}]_{e} } & =(\tilde{X} \tilde{Y}-\tilde{Y} \tilde{X})_{e} \tag{3.26}\\
& =\tilde{X}_{e}(A \rightarrow A Y)-\tilde{Y}_{e}(A \rightarrow A X) \tag{3.27}
\end{align*}
$$

Using the coordinate function

$$
\begin{align*}
{[\tilde{X}, \tilde{Y}]_{e}\left(x_{i j}\right) } & =\tilde{X}_{e}(A \rightarrow A Y)_{i j}-\tilde{Y}_{e}(A \rightarrow A X)_{i j} \tag{3.28}\\
& =(X Y-Y X)_{i j} \tag{3.29}
\end{align*}
$$

Hence $[\tilde{X}, \tilde{Y}]_{e}=X Y-Y X$. The result then follows from the previous theorem.
Theorem 3.8. Let $G \subset G L(n, \mathbb{R})$ be a closed subgroup (hence a Lie group). Then $\mathfrak{g}=T_{e} G$ has bracket $[A, B]=A B-B A$ for $A, B \in \mathfrak{g}$.

Example 3.7. Consider $S L(n, \mathbb{R}) \subset G L(n, \mathbb{R})$. We have

$$
\begin{equation*}
\mathfrak{s l}(n, \mathbb{R})=T_{e}(S L(n, \mathbb{R})) \subset T_{e}(G L(n, \mathbb{R}))=\mathfrak{g l}(n, \mathbb{R}) \tag{3.30}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
\mathfrak{s l}(n, \mathbb{R})=\left\{A \in M_{n}(\mathbb{R}): \operatorname{tr}(A)=0\right\} \tag{3.31}
\end{equation*}
$$

In order to prove the above proposition, we take a path $A(t) \in S L(n, \mathbb{R})$ with $A(0)=I$, $A^{\prime}(0) \in \mathfrak{s l}(n, \mathbb{R})$. Fact: Since $D(\operatorname{det})_{A}(B)=\operatorname{det}(A) \cdot \operatorname{tr}(B)$, we have $D(\operatorname{det})_{I}(B)=\operatorname{tr}(B)$. Using this fact,

$$
\begin{align*}
\left.\frac{d}{d t}\right|_{t=0} \operatorname{det} A(t) & =0=D(\operatorname{det})_{I}\left(A^{\prime}(0)\right) \tag{3.32}\\
& =\operatorname{tr}\left(A^{\prime}(0)\right) \tag{3.33}
\end{align*}
$$

Therefore $T_{e}(S L(n, \mathbb{R})) \subset\left\{A \in M_{n}(\mathbb{R}): \operatorname{tr} A=0\right\}$. The equality follows by counting the dimension. More generally, we can prove the above result by using the exponential map.

Definition 3.5. Let A be a complex $n \times n$ matrix, we define the exponential map of A by

$$
\begin{equation*}
e^{A}=\exp (A)=I+A+\frac{A^{2}}{2!}+\cdots+\frac{A^{n}}{n!}+\cdots \tag{3.34}
\end{equation*}
$$

It is easy to show that the above series converges absolutely and uniformly on any compact set $|A|<\alpha$ for any $\alpha>0$.

Proposition 3.9. The exponential map has the following properties:

1. $\operatorname{det} e^{A}=e^{\operatorname{tr}(A)}$.
2. $e^{A} \cdot e^{B}=e^{A+B}=e^{B} \cdot e^{A}$ if any only if $A B=B A$.
3. $B e^{A} B^{-1}=e^{B A B^{-1}}$.
4. $B e^{A} B^{T}=e^{B A B^{T}}$.

Note that in $M_{n} \mathbb{R}$, the matrices that can be diagonalized are dense.
Example 3.8. Let $\mathfrak{o}(n)$ be the Lie algebra of $O(n)$, then $\mathfrak{o}(n)=\left\{A: A+A^{T}=0\right\}$. Note that $S O(n)$ is a component of $O(n)$ that contains the identity. Let $A(t)$ be a path in $S O(n)$ such that $A(0)=I$ and $A^{\prime}(0) \in \mathfrak{o}(n)$, then $A(t) A^{T}(t)=I$. Differentiate both sides at 0 gives

$$
\begin{equation*}
\left.\left(A^{\prime}(t) A(t)+A(t)\left(A^{T}(t)\right)^{\prime}\right)\right|_{t=0}=0 \tag{3.35}
\end{equation*}
$$

since $A(0)=I$,

$$
\begin{equation*}
A^{\prime}(0)+\left(A^{T}(0)\right)^{\prime}=0 \tag{3.36}
\end{equation*}
$$

This shows that if $A \in \mathfrak{o}(n)$, then $A+A^{T}=0$. For the other direction, let $A \in \mathfrak{o}(n)$, and define the map $t \mapsto e^{t A}=B(t)$. From the definition of the exponential map,

$$
\begin{equation*}
e^{t A}==I+t A+\frac{t^{2} A^{2}}{2!}+\cdots+\frac{t^{n} A^{n}}{n!}+\cdots \tag{3.37}
\end{equation*}
$$

we have $B(0)=I$ and $B^{\prime}(0)=A$. Then

$$
\begin{equation*}
B(t) B^{T}(t)=e^{t A} e^{t A^{T}}=e^{t A+t A^{T}}=e^{0}=I \tag{3.38}
\end{equation*}
$$

since A and A^{T} commute. We are done.
Theorem 3.10. If $G \subset G L(n, \mathbb{R})$, so \mathfrak{g} is a subalgebra of $\mathfrak{g l}(n, \mathbb{R})$. Then $A \in \mathfrak{g}$ if and only of $e^{A} \in G$.

3.3 Homomorphisms

Definition 3.6. A map $\phi: H \rightarrow G$ is Lie group homomorphism if it is a group homomorphism and it is smooth.

Definition 3.7. $H \subset G$ is a Lie subgroup if the inclusion map $H \hookrightarrow G$ is both a Lie group homomorphism and a 1-1 immersion, i.e. a 1-1 immersed submanifold + subgroup.

Theorem 3.11. Let H, G be Lie groups with Lie algebras \mathfrak{h} and \mathfrak{g} respectively, and let $\phi: H \rightarrow G$ be a homomorphism. Then X and $d \phi(X)$ are ϕ-related, and $(d \phi)_{e}: \mathfrak{h} \rightarrow \mathfrak{g}$ is a Lie algebra homomorphism, i.e.

$$
\begin{equation*}
(d \phi)_{e}([X, Y])=\left[(d \phi)_{e}(X),(d \phi)_{e}(Y)\right] \tag{3.39}
\end{equation*}
$$

for $X, Y \in \mathfrak{h}$.
Proof. Let $X, Y \in \mathfrak{h}=T_{e} H$. Define \tilde{X}, \tilde{Y} be the corresponding left invariant vector fields with $\tilde{X}(e)=X$ and $\tilde{Y}(e)=Y$. Note that $\left(d L_{g}\right)_{e} X=\tilde{X}(g)$ for $g \in H$. First we show that \tilde{X} and $\widetilde{(d \phi)_{e} X}$ are ϕ - related, i.e.

$$
\begin{equation*}
(d \phi)_{g}(\tilde{X}(g))=\widetilde{(d \phi)_{e} X}(\phi(g)) \tag{3.40}
\end{equation*}
$$

for all $g \in H$.
By definition,

$$
\begin{align*}
(d \phi)_{g}(\tilde{X}(g)) & =(d \phi)_{g}\left(\left(d L_{g}\right)_{e}(X)\right) \tag{3.41}\\
& =d\left(\phi \circ L_{g}\right)_{e}(X) . \tag{3.42}
\end{align*}
$$

Since

$$
\begin{equation*}
\phi\left(L_{g}(h)\right)=\phi(g h)=\phi(g) \phi(h)=L_{\phi(g)}(\phi(h)) \tag{3.43}
\end{equation*}
$$

we have $\phi \circ L_{g}=L_{\phi(g)} \circ \phi$. Therefore,

$$
\begin{align*}
d\left(\phi \circ L_{g}\right)_{e}(X) & =d\left(L_{\phi(g)} \circ \phi\right)_{e}(X) \tag{3.44}\\
& =\left(d L_{\phi(g)}\right)(d \phi)_{e}(X) \tag{3.45}\\
& =\left(\widetilde{d \phi)_{e} X} \circ \phi(g),\right. \tag{3.46}
\end{align*}
$$

since $(d \phi)_{e}(X) \in \mathfrak{g}$. Hence we have proved that \tilde{X} and $\widetilde{(d \phi)_{e} X}$ are ϕ - related, which implies that X and $d \phi(X)$ are ϕ-related.
Now we need show

$$
\begin{equation*}
(d \phi)_{e}\left([\tilde{X}, \tilde{Y}]_{e}\right)=\left[\left(\widetilde{d \phi)_{e}(X}\right),\left(\widetilde{d \phi)_{e}(Y}\right)\right]_{e} . \tag{3.47}
\end{equation*}
$$

This follow directly from X, Y and $d \phi(X), d \phi(Y)$ are ϕ-related respectively.
Corollary 3.12. If $H \subset G$ is a Lie subgroup, then $\mathfrak{h} \subset \mathfrak{g}$ is a subalgebra.
Example 3.9. Let $G \subset G L(n, \mathbb{R})$ be a Lie subgroup (i.e. a closed subgroup), then for $A, B \in \mathfrak{g},[A, B]=A B-B A$. Moreover, $\mathfrak{g} \subset \mathfrak{g l}(n, \mathbb{R})$.

Example 3.10. The unit circle $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ a Lie group.
Example 3.11. $T^{2}=S^{1} \times S^{1}$ is also a Lie group. We can also view $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. If H has irrational slope, then it is a 1-1 immersed submanifold.

Theorem 3.13. Let G be a Lie group with Lie algebra \mathfrak{g}, and $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra. Then there exists a unique connected Lie subgroup $H \subset G$ such that the Lie algebra of H is \mathfrak{h}.

Proof. Let Δ be the distribution of G such that $\Delta_{e}=h \in \mathfrak{h}$, and Δ is left invariant, i.e.

$$
\begin{equation*}
\Delta_{g}=\left(d L_{g}\right)_{e}(h) \tag{3.48}
\end{equation*}
$$

Δ is a smooth distribution since it is globally spanned by left invariant vector fields \tilde{X}_{i} on G such that $\tilde{X}_{i}(e) \in \mathfrak{h}=\Delta_{e}$ and $\tilde{X}(g) \in \Delta_{g}$. Since $[\tilde{X}, \tilde{Y}]$ is left invariant and $[\tilde{X}, \tilde{Y}]=$ $[X, Y] \in \mathfrak{h}$ which follows from the fact that \mathfrak{h} is a subalgebra, i.e. $X, Y \in \mathfrak{h} \Rightarrow[X, Y]_{\mathfrak{g}} \in \mathfrak{h}, \Delta$ is involutive hence integrable.
Let H be a maximal leaf of Δ through $e \in G$, then this leaf is unique. We will show H is a subgroup of G. Let $h \in H$, then $h^{-1} \in G$. We claim that $L_{h^{-1}}(H)=H$.

Lemma 3.14. For any F being a leaf of Δ in G, then $L_{g}(F)$ is also a leaf, where $g \in G$.

Proof of the lemma. Since $F \subset G, T(F)_{g}=\Delta_{g}$, so

$$
\begin{equation*}
T\left(L_{g}(F)\right)_{\bar{g}}=d\left(L_{g}\right)\left(T(F)_{\bar{g}}\right)=d\left(L_{g}\right) \Delta_{\bar{g}}=\Delta_{g \bar{g}} . \tag{3.49}
\end{equation*}
$$

By this lemma L_{g} sends leaves of Δ into leaves of Δ. So $L_{h^{-1}}(H)$ is a leaf of Δ. Since $L_{h^{-1}}(h)=e, L_{h^{-1}}(H)$ is a leaf through $e \in G$. By uniqueness of the maximality, $L_{h^{-1}}(H)=H$. Therefore, if $h, g \in H$, we have $h^{-1} g \in H$. We see that H is an abstract subgroup of G, hence a Lie subgroup.

Corollary 3.15. Let $\phi, \psi: H \rightarrow G$ be two Lie group homomorphisms with $(d \phi)_{e}=(d \psi)_{e}$, then $\phi=\psi$.

Proof. Let $\operatorname{graph}(\phi)=\{(h, \phi(h)) \in H \times G: h \in H\}$. Note that $H \times G$ is a Lie group, ϕ is a homomorphism iff $\operatorname{graph}(\phi)$ is a subgroup of $H \times G$, since

$$
\begin{equation*}
(h, \phi(h)) \cdot(\tilde{h}, \phi(\tilde{h}))=(h \tilde{h}, \phi(h) \phi(\tilde{h}))=(h \tilde{h}, \phi(h \tilde{h})) . \tag{3.50}
\end{equation*}
$$

Also, $l: \mathfrak{h} \rightarrow \mathfrak{g}$ is a Lie algebra homomorphism iff $\operatorname{graph}(l)=\{(h, l(h)): h \in \mathfrak{h}\}$ is a Lie subalgebra of $\mathfrak{h} \times \mathfrak{g}$.
Now $\operatorname{graph}(\phi), \operatorname{graph}(\psi)$ are Lie subgroups of $H \times G$, and $\operatorname{graph}(d \phi)$ is a Lie subalgebra of \mathfrak{g}. We have

$$
\begin{equation*}
T_{e}(\operatorname{graph}(\phi))=\operatorname{graph}((d \phi))_{e}, \tag{3.51}
\end{equation*}
$$

since if we let $(g(t), \phi(g(t))))$ and $g(0)=e$, then $\operatorname{graph}\left(g^{\prime}(0)\right)=\left(g^{\prime}(0), \phi\left(g^{\prime}(0)\right)\right)$.
Now $\operatorname{graph}(\phi)$ and $\operatorname{graph}(\psi)$ are two Lie subgroups of $H \times G$ and have the same Lie algebra. By uniqueness, $\phi=\psi$.

Question 1 Given a Lie algebra \mathfrak{g}, does there exist a Lie group G which has the Lie algebra \mathfrak{g} ? This question is answered by Ado's theorem.

Question 2 Given two Lie groups H and G, let $\phi: \mathfrak{h} \rightarrow \mathfrak{g}$ be a homomorphism of the Lie algebras of H and G respective. Does there exist a homomorphism $\psi: H \rightarrow G$ with $d \psi=\phi$?

Question 3 Given \mathfrak{g}, is G unique? The answer is no. For example, $S U(2), S O(3)$, and $S p(1)$ have the same Lie algebra. We have $S U(2) \simeq S p(1)$, whereas $S p(1) \mapsto S O(3)$ defined by $q \mapsto\{v \rightarrow q v \bar{q}\}$ is a 2-1 map.

Exercise 3.2. Let $q \in S p(1)$, and write $q=a+b j$ for $a, b \in \mathbb{C}$. Show that

$$
\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right) \in S U(2)
$$

4 Differential forms

5 Integration on manifolds

5.1 Integration

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and $U \subset \mathbb{R}^{n}$, then

$$
\begin{equation*}
\int_{U} f d x_{1} \cdots d x_{n}=\int \cdots \int\left(f d x_{1}\right) d x_{2} \cdots d x_{n} \tag{5.1}
\end{equation*}
$$

Let $g: U \rightarrow V$ be a local diffeomorphism. Let $U, V \subset \mathbb{R}^{n}$ be open. Applying the change of variables formula, we get

$$
\begin{equation*}
\int_{V} f d x_{1} \cdots d x_{n}=\int_{g(V)} f \circ g|\operatorname{det} D g| d y_{1} \cdots d y_{n} \tag{5.2}
\end{equation*}
$$

Now let M be an oriented n-dimensional manifold. Let $\omega \in \Omega^{n}(M)$, our aim is to define $\int_{M} \omega$.
Locally, we can write $\omega=f d x_{1} \cdots d x_{n}$, where (U, x) is a local coordinate. Then we define

$$
\begin{equation*}
\int_{U} \omega=\int_{x(U)} f \circ x^{-1} d x_{1} \cdots d x_{n} . \tag{5.3}
\end{equation*}
$$

In another coordinate (V, y) for $U \cap V \neq \emptyset$. Suppose that supp $\omega \subset U \cap V$, then $\omega \in$ $\Omega^{n}(U), \Omega^{n}(V)$. By previous definition,

$$
\begin{align*}
& \int_{U} \omega=\int_{x(U)} f \circ x^{-1} d x_{1} \cdots d x_{n} \tag{5.4}\\
& \int_{V} \omega=\int_{y(V)} f \circ y^{-1} d y_{1} \cdots d y_{n} \tag{5.5}
\end{align*}
$$

Let $g=x \circ y^{-1}: y(U \cap V) \rightarrow x(U \cap V)$, then it is a diffeomorphism. The pull-back

$$
\begin{align*}
g^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right)= & D(g)^{*}\left(d x_{1} \wedge \cdots \wedge d x_{n}\right) \tag{5.6}\\
& =\operatorname{det}(D g)\left(d y_{1} \wedge \cdots \wedge d y_{n}\right) \tag{5.7}
\end{align*}
$$

Lemma 5.1. Let $x=g(y), D g$ preserves the orientation, then

$$
\begin{equation*}
\int_{g(U \cap V)} \omega=\int_{U \cap V} g^{*}(\omega) \tag{5.8}
\end{equation*}
$$

Proof.

$$
\begin{align*}
g^{*}(\omega) & =g^{*}\left(f d x_{1} \wedge \cdots \wedge d x_{n}\right) \tag{5.9}\\
& =D(g)^{*}\left(f d x_{1} \wedge \cdots \wedge d x_{n}\right) \tag{5.10}\\
& =\operatorname{det}(D g)\left(f \circ x^{-1} d x_{1} \wedge \cdots \wedge d x_{n}\right) \tag{5.11}\\
& =\operatorname{det}(D g)\left(f \circ x^{-1} \circ x \circ y^{-1} d y_{1} \wedge \cdots \wedge d y_{n}\right) \tag{5.12}\\
& =\operatorname{det}(D g)\left(f \circ y^{-1} d y_{1} \wedge \cdots \wedge d y_{n}\right) . \tag{5.13}
\end{align*}
$$

Then we just need to app ly the change of variables formula as before.
Let M be an orientable manifold with oriented atlas $\left(U_{\alpha}, x_{\alpha}\right)$. Choose a partition of unity $\left\{\phi_{\alpha}\right\}$ subordinate to $\left\{U_{\alpha}\right\}$, with $\phi_{\alpha}: M \rightarrow \mathbb{R}, \sum \phi_{\alpha}=1$, and supp $\phi_{\alpha} \subset U_{\alpha}$. If $\omega \in \Omega^{n}(M)$ has compact support, we define

$$
\begin{equation*}
\int_{M} \omega=\int\left(\sum_{\alpha} \phi_{\alpha}\right) \omega=\sum_{\alpha}\left(\int_{U_{\alpha}} \phi_{\alpha} \omega\right), \tag{5.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{U} \omega=\int_{x(U)} f \circ x^{-1} d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.15}
\end{equation*}
$$

as before. We need to show that this formula is independent of the choice of the partition of unity and the coordinates. Suppose we have another partition of unity $\left\{\psi_{\beta}\right\}$ subordinate to charts $\left\{V_{\beta}\right\}$.

$$
\begin{align*}
\int_{M} \omega & =\sum_{\alpha}\left(\int_{U_{\alpha}} \phi_{\alpha} \omega\right) \tag{5.16}\\
& =\sum_{\alpha}\left(\int_{U_{\alpha}}\left(\sum_{\beta} \eta_{\beta}\right) \phi_{\alpha} \omega\right) \tag{5.17}\\
& =\sum_{\alpha, \eta}\left(\int_{U_{\alpha} \cap V_{\beta}} \eta_{\beta} \phi_{\alpha} \omega\right) \tag{5.18}\\
& =\sum_{\eta, \alpha}\left(\int_{U_{\alpha} \cap V_{\beta}} \phi_{\alpha} \eta_{\beta} \omega\right) \tag{5.19}\\
& =\sum_{\beta}\left(\int_{V_{\beta}}\left(\sum_{\alpha} \phi_{\alpha}\right) \eta_{\beta} \omega\right) \tag{5.20}\\
& =\sum_{\beta}\left(\int_{V_{\beta}} \eta_{\beta} \omega\right) . \tag{5.21}
\end{align*}
$$

Theorem 5.2. Let $F: M \rightarrow N$ be an orientation preserving diffeomorphism, $\omega \in \Omega^{n}(N)$. Then we have

$$
\begin{equation*}
\int_{M} f^{*}(\omega)=\int_{f(M)=N} \omega \tag{5.22}
\end{equation*}
$$

Example 5.1 (line integrals in \mathbb{R}^{3}). Let $c: I \rightarrow \mathbb{R}^{3}$ be a smooth parametrized curve, where $I \subset \mathbb{R}$ is an interval. Let $f: N^{k} \rightarrow M^{n}, k<n$ be a smooth map, and $\omega \in \Omega^{n}(M)$. We define

$$
\begin{equation*}
\int_{N^{k}} f^{*}(\omega)=\int_{f\left(N^{k}\right)} \omega \tag{5.23}
\end{equation*}
$$

Hence we could define the line integral of $\omega=f_{1} d x+f_{2} d y+f_{3} d z$ over c in \mathbb{R}^{3} by

$$
\begin{equation*}
\int_{C} f_{1} d x+f_{2} d y+f_{3} d z=\int_{I} c^{*}(\omega) \tag{5.24}
\end{equation*}
$$

Note that $c=(x(t), y(t), z(t))$ is independent of parametrization, and $c^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. So we have

$$
\begin{align*}
\int_{I} c^{*}(\omega) & =\int_{I} f_{1} \frac{d x}{d t} d t+f_{2} \frac{d y}{d t} d t+f_{3} \frac{d z}{d t} d t \tag{5.25}\\
& =\int_{I}\left(\sum_{i} f_{i} \frac{d x_{i}}{d t}\right) d t \tag{5.26}
\end{align*}
$$

Example 5.2 (surface integral in \mathbb{R}^{3}). Let $f: U \subset R^{3} \rightarrow \mathbb{R}$, and $x(s, t)$ be a smooth parametrization of $M^{2} \in \mathbb{R}^{3}$. Then the surface integral of f is

$$
\begin{equation*}
\int_{M}^{2} f d A=\int_{\mathbb{R}^{2}(s, t)} x^{*}(f d A), \tag{5.27}
\end{equation*}
$$

where $d A$ is the area element of M^{2}

$$
\begin{equation*}
d A=\left\|\frac{d x}{d s} \times \frac{d x}{d t}\right\| d s d t \tag{5.28}
\end{equation*}
$$

5.2 Stokes' theorem

Let $\left.\mathbb{H}^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: x_{n} \geq 0\right)\right\}$ be the upper half plane. Then the boundary of \mathbb{H}^{n} is $\partial \mathbb{H}^{n}=\left\{x_{n}=0\right\} \simeq \mathbb{R}^{n-1}$. We say M is a manifold with boundary ∂M if for each $p \in \partial M$, there exist coordinates $(U, x),(V, y)$ of p, such that $x: U \rightarrow \mathbb{H}^{n}, y: V \rightarrow \mathbb{H}^{n}$ are homeomorphisms, $x(p), y(p) \in \partial \mathbb{H}^{n}$, moreover, $x \circ y^{-1}: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}$ is a diffeomorphism in the interior of \mathbb{H}^{n} and $x \circ y^{-1}\left(\partial \mathbb{H}^{n}\right) \subset \partial \mathbb{H}^{n}$.
An orientation on M induces an orientation on ∂M. In fact, let $\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}} \in T_{p} M$, then $\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n-1}} \in T_{p}(\partial M)$ induces an orientation on ∂M. Conversely, let $v_{1}, \cdots, v_{n-1} \in$ $T_{p}(\partial M) \subset T_{p} M$ be an oriented basis, and let \vec{n} is the outer normal vector. Then $v_{1}, \cdots, v_{n-1}, \vec{n}$ is an oriented basis for $T_{p} M$.

Theorem 5.3 (Stokes'). Let M be an orientable manifold with boundary ∂M. We have

$$
\begin{equation*}
\int_{M} d \omega=\int_{\partial M} \omega \tag{5.29}
\end{equation*}
$$

Let $i: \partial M \rightarrow M$ be a smooth map which is an identity when restricted to ∂M, then we have $i^{*}(\omega) \in \Omega^{n-1}(\partial M)$, and

$$
\begin{equation*}
\int_{M} d \omega=\int_{\partial M} i^{*}(d \omega)=\int_{\partial M} \omega \tag{5.30}
\end{equation*}
$$

Theorem 5.4 (Brower fixed point theorem). Let $B^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}$. Let $f: B^{n} \rightarrow B^{n}$ be a C^{∞} map, then there exists a point $x \in B^{n}$ such that $f(x)=x$.

Proof. Suppose f has no fixed points. Let $j: \partial B^{n} \rightarrow B^{n}$ such that $\left.j\right|_{\partial B^{n}}=I d$, where $j(x)$ is defined to be the intersection of ∂B^{n} and the ray starting from $f(x)$ through x. If f is C^{∞}, then j is C^{∞}. We need to choose a $\omega \in \Omega^{n}(B)$ such that $\int_{\partial B^{n}} \omega>0$, then we have

$$
\begin{equation*}
0 \neq \int_{\partial B^{n}} \omega=\int_{\partial B^{n}} j^{*}(\omega) \tag{5.31}
\end{equation*}
$$

since $\left.j\right|_{\partial B^{n}}=I d$. Since $j^{*}(d \omega) \in \Omega^{n}\left(\partial B^{n}\right), j^{*}(d \omega)=0$. Therefore, by Stokes' theorem,

$$
\begin{equation*}
\int_{\partial B^{n}} j^{*}(\omega)=\int_{B^{n}} d\left(j^{*}(\omega)\right)=\int_{B^{n}} j^{*}(d \omega)=0 \tag{5.32}
\end{equation*}
$$

which gives a contradiction.
Next we show that we can find such a $\omega \in \Omega^{n}(B)$ with $\int_{\partial B^{n}} \omega>0$.
Definition 5.1. $\omega \in \Omega^{n}\left(M^{n}\right)$ is called a volume form if $\omega_{p}\left(v_{1}, \cdots, v_{n}\right)>0$ for every $p \in M^{n}$, where v_{1}, \cdots, v_{n} is a positively oriented basis of $T_{p} M^{n}$.
Let M^{n} be compact, we claim that for any volume form $\omega, \int_{M^{n}} \omega>0$. By definition,

$$
\begin{equation*}
\int_{M^{n}} \omega=\int_{U_{\alpha}} \sum_{\alpha}\left(\phi_{\alpha} \omega\right) \tag{5.33}
\end{equation*}
$$

where $\left\{\phi_{\alpha}\right\}$ is a partition of unity subordinate to charts $\left\{U_{\alpha}\right\}$ of M^{n}. Since $\phi_{\alpha} \geq 0$, $\phi_{\alpha} \omega_{p}\left(v_{1}, \cdots, v_{n}\right) \geq 0$ for every p. $\sum \phi_{\alpha}=1$ implies that for any $p \in M^{n}$, there exists an α such that $\phi_{\alpha}(p)>0$. So

$$
\begin{equation*}
\int_{U_{\alpha}} \phi_{\alpha} \omega>0 \tag{5.34}
\end{equation*}
$$

Note that $\left(x_{\alpha}^{-1}\right)^{*}\left(\phi_{\alpha} \omega\right)=f d x_{1} \wedge \cdots \wedge d x_{n}$, and we have $f(p)>0$ and $f \geq 0$. Now, since $\sum_{\beta} \phi_{\beta} \omega \geq 0$ and $\int \phi_{\alpha} \omega>0, \sum_{\beta}\left(\int_{U_{\beta}} \phi_{\beta} \omega\right)>0$.
Proposition 5.5. There exists a volume form $\omega \in \Omega^{n}\left(M^{n}\right)$ if and only if M^{n} is orientable.
Proof. (\Leftarrow) Clear.
(\Rightarrow) Given $\omega \in \Omega^{n}(M)$, define v_{1}, \cdots, v_{n} to be oriented if $\omega\left(v_{1}, \cdots, v_{n}\right)>0$. If w_{1}, \cdots, w_{n} is oriented, and $v_{i}=L w_{i}$, then $\operatorname{det} L>0$. Since $L^{*}(\omega)=(\operatorname{det} L) \omega$,

$$
\begin{equation*}
L^{*}(\omega)\left(v_{1}, \cdots, v_{n}\right)=\omega\left(L w_{1}, \cdots, L w_{n}\right)=(\operatorname{det} L) \omega\left(w_{1}, \cdots, w_{n}\right) \tag{5.35}
\end{equation*}
$$

Hence $\omega\left(w_{1}, \cdots, w_{n}\right)>0$.

Theorem 5.6. Let M^{n} be a compact manifold with $\partial M \neq 0$, then there exists no map $j: M \rightarrow \partial M$ such that $\left.j\right|_{\partial M}=I d$. (j is a retraction.)

Proof of the Stokes' theorem
Proof. (a) Locally, $\omega \in \Omega^{n-1}\left(\mathbb{R}^{n}\right)$. Let $\operatorname{supp}(\omega) \subset U$, where $U \in \mathbb{H}^{n}$ is an open set such that $\partial \bar{U}$ is compact. We can write $\omega=\sum_{i} f_{i} d x_{1} \wedge \cdots \widehat{d x_{i}} \cdots \wedge d x_{n}$, so

$$
\begin{align*}
d \omega & =\sum_{i} d f_{i} \wedge d x_{i} \wedge d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.36}\\
& =\sum_{i, j} \frac{\partial f_{i}}{\partial x_{j}} d x_{j} \wedge d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.37}\\
& =\sum_{i, j} \frac{\partial f_{i}}{\partial x_{j}} d x_{j} \wedge d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.38}
\end{align*}
$$

