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Geometric analysis I 2 INTEGRAL CURVES AND FLOWS

Abstract

These notes are intended as a resource for myself; past, present, or future students of
this course, and anyone interested in the material. The goal is to provide an end-to-end
resource that covers all material discussed in the course displayed in an organized
manner. If you spot any errors or would like to contribute, please contact me directly.

1 Manifolds

2 Integral curves and flows

2.1 Integral curves

Let M be a manifold,and X is a smooth vector field on M . An integral curve of X is a
differentiable curve γ : (−ε, ε)→M such that

γ′(t) = X(γ(t)) ∈ Tγ(t)M (2.1)

for each t in the domain.
Let p ∈M , and (U, φ) be a chart containing p, so φ(p) = (x1, · · · , xn). Let Y be a C∞ vector
field on M . Let γ : (−ε, ε)→ Rn be an integral curve, γ(t) = (γ1(t), · · · , γn(t)). We can write
Y (p) = (Y1(p), · · · , Yn(p). By using γ′(t) = X(γ(t)) we get the following system of ODEs:

γ′1(t) = Y1 ◦ (γ1(t), · · · , γn(t))
γ′2(t) = Y2 ◦ (γ1(t), · · · , γn(t))

. . .
γ′n(t) = Yn ◦ (γ1(t), · · · , γn(t))

(*)

which is a system of n first order ODEs (usually nonlinear).

Theorem 2.1. Let X be a smooth vector field on a manifold M . For any p ∈M there exists
a(p), b(p) ∈ R ∪ {±∞} and a smooth curve

γp : (a(p), b(p))→M (2.2)

such that

• o ∈ (a(p), b(p)), and γp(0) = p.

• γp is an integral curve of X.

• If µ : (c, d) → M is a smooth curve satisfying the previous two conditions, then
(c, d) ⊂ (a(p), b(p)). Moreover, µ = γp|(c,d).

Corollary 2.2. Let X be a vector field on M . For any p ∈M , there exists a neighborhood
V of p and a > 0 such that Φ : (−a, a)× V →M is a C∞ map, and Φ(t, p) = γp(t).
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Geometric analysis I 2 INTEGRAL CURVES AND FLOWS

Definition 2.1. For an integral curve γp(a, b)→M , we define the flow of γ

Φt(p) = γp(t). (2.3)

Example 2.1. Let Z(a) = a2 be a vector field on R. Then we have γ′ = Z ◦ γ = γ2. Solving
this ODE gives γ(t) = 1/(−t+ c), so γ(0) = 1/c = p. The flow is given by

Φt(p) =
1

−t+ 1/p
. (2.4)

Example 2.2. Let Z(a) = a2/3. Now we don’t have uniqueness. For example, take γ(0) = 0,
then we have two solutions γ(t) = 0 and γ(t) = (1/27)t3.

Corollary 2.3. Let X be a vector field on M . For any p ∈M , there exists a neighborhood
V of p and a > 0 such that Φ : (−a, a)× V →M is a C∞ map, and Φ(t, p) = γp(t).

Proposition 2.4 (Group law). Let V and a > 0 be as in above, and |t|, |s|, |t+ s| < a, then
we have

Φs ◦ Φt = Φs+t (2.5)

at q if q ∈ V and Φt(q) ∈ V .

Proof. Fixed t. Define

β(s) = Φs+t(q) (2.6)
δ(s) = Φs ◦ Φt(q). (2.7)

We will show that both of them are integral curves with the same initial conditions. Put
s = 0,

β(0) = Φt(q) (2.8)
δ(0) = Φ0 ◦ Φt(q) = Φt(q). (2.9)

Note that the second equality follows from Φ0(p) = γp(0) = p.

β′(s0) =
d

ds

∣∣∣∣
s=s0

β(s) (2.10)

=
d

ds

∣∣∣∣
s=s0

Φs+t(q) (2.11)

=X
(
Φs0+t(q)

)
= X

(
γΦt(q)(s0)

)
. (2.12)
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Geometric analysis I 2 INTEGRAL CURVES AND FLOWS

And

δ′(s) =
d

ds

∣∣∣∣
s=s0

δ(s) (2.13)

=
d

ds

∣∣∣∣
s=s0

Φs ◦ Φt(q) (2.14)

=X
(

Φs0

(
Φt(q)

))
= X

(
γΦt(q)(s0)

)
. (2.15)

Definition 2.2. A vector field is complete if all its integral curves are defined for all t ∈ R.

Theorem 2.5. Let M be a manifold and X be a smooth vector field on M . If M is compact,
or X has compact support, then X is complete.

Proof. Suppose X has compact support, then there exists an open cover {Ui}(i = 1, · · · , k)
of the support of X, with ai > 0 such that Φi : (−ai, ai) → M is the flow on each Ui. Let
a = mini{ai}. We have that each Φi : (−a, a) → M is well defined. Φi and Φj agree on
Ui ∩ Uj by the uniqueness of integral curves. Since X vanishes , every integral curve starting
outside the support is constant and thus can be defined on all of t. Hence X is complete.

If a vector field X is complete, then Φt : M →M is a diffeomorphism. We have

Φ0 = Id (2.16)
Φt ◦ Φs = Φt+s (2.17)
(Φt)

−1 = Φ−t. (2.18)

Proposition 2.6. An one parameter family of diffeomorphism on M is a smooth map
Φt : M →M such that Φt ◦ Φs = Φt+s and Φ0 = Id. This defines a vector field on M with
flow Φt.

Proof. Let q ∈ M . Define Y (q) = d
dt

∣∣
t=0

Φt(q). Then Φt is the flow of γq(t) = Φt(q), and
γq(t)

′ = Y ◦ γq(t) since

dγ

dt

∣∣∣∣
t=t0

γq(t) =
dγ

dt

∣∣∣∣
t=t0

Φq(t) (2.19)

=
dγ

ds

∣∣∣∣
s=0

Φt0+s(q) (2.20)

=
dγ

ds

∣∣∣∣
s=0

Φs ◦ Φt0(q) (2.21)

=Y (Φt0(q)) = Y
(
γq(t0)

)
. (2.22)
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2.2 Lie derivatives

Let f : Mn → Nn be a diffeomorphism, and X be a vector field on X. Then we can get a
push forward vector field f∗(X) on N by setting

f∗(X)
∣∣∣
q

= df
∣∣∣
f−1(q)

(
Xf−1(q)

)
∈ TqN (2.23)

for some q ∈ N .
If Y is a vector field on N , then define the pull back

f ∗(Y )
∣∣∣
p

= d(f−1)
∣∣∣
f(p)

(
Yf(p)

)
∈ TpM (2.24)

for p ∈M .

Exercise 2.1. Let f , X, Y be as above, and g ∈ C∞(N). Show that

f∗(X)g = X(g ◦ f) ◦ f−1. (2.25)

Similarly, let h ∈ C∞(M). We have

f ∗(Y )h = X(h ◦ f−1) ◦ f. (2.26)

Lemma 2.7. If X is a smooth vector field on Mwith Xp 6= 0, then there exists a coordinate
(U, x) at p such that Xq = ∂

∂x1

∣∣∣
q
for all q ∈ U .

Proof. Choose a coordinate (V, y) containing p such that y1(p) = 0 and

∂

∂y1

∣∣∣
p

= Xp. (2.27)

Let Φt be the flow of X. Define Ψ : W ⊂ Rn →M by

Ψ(t, · · · , an) = Φt

(
y−1(0, a2, · · · , an)

)
. (2.28)

Then we have

dΨ
( ∂

∂r1

∣∣∣
0

)
f =

d

dt

∣∣∣
t=0

(
f ◦ Φ0

(
y−1(0, a2, · · · , an)

))
(2.29)

=X
Φt(y−1

(
0,a2,··· ,an)

)∣∣∣∣
t=0

(f) (2.30)

=
∂

∂y1

∣∣∣
p
(f) (2.31)

and

dΨ
( ∂

∂ri

∣∣∣
0

)
=
∂

∂yi

∣∣∣
p

(2.32)
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for f ∈ C∞(M). Note that Ψ(0, · · · , an) = y−1
(
(0, · · · , an)

)
. Hence dΨ

∣∣
t=0

is invertible hence
an isomorphism. By Inverse function theorem, there exists an open U ⊂ Ψ(W ) such that
Ψ : U → Ψ(U) is a diffeomorphism. Therefore x = Ψ−1 is a coordinate function. Let q ∈ U
and x(q) = (a1, · · · , an).

Xq = X
(

Ψ
(
(a1, · · · , an)

))
=
d

dt

∣∣∣∣
t=0

Φt

(
Ψ
(
(a1, · · · , an)

))
(2.33)

=
d

dt

∣∣∣∣
t=0

Φt ◦ Φa1

(
y−1(0, a2, · · · , an)

)
(2.34)

=
d

dt

∣∣∣∣
t=0

Φt+a1

(
y−1(0, a2, · · · , an)

)
(2.35)

=
d

dt

∣∣∣∣
t=0

Ψ
(
(a1 + t, a2, · · · , an)

)
(2.36)

=
∂

∂x1

∣∣∣∣
q

(2.37)

as required.

Definition 2.3. Let X, Y be vector fields on M , and X has flow Φt. Then we define LXY
to be the Lie derivative of Y with respective to X at p which has the expression

(LXY )p = lim
p→0

Φ∗t (YΦt(p))− Yp
t

=
d

dt

∣∣∣
t=0

(
Φ∗t (Y )Φt(p)

)
. (2.38)

Exercise 2.2. Show that LX(f) = X(f).

Theorem 2.8. Let X be a vector field on M with flow Φt, and Y be another vector field on
X. Let p ∈M , then

[X, Y ](p) =
d

dt

∣∣∣
t=0

(
Φ∗t (YΦt(p))

)
=

d

dt

∣∣∣
t=0

(
d(Φ−t)

(
Y ◦ Φt(p)

))
. (2.39)

Proof. WLOG, assume that Xp 6= 0. Choose coordinate (U, z) containing p such that X = ∂
∂z1

on U . Let Y be a vector field on X, so Y =
∑

i bi
∂
∂zi

on U . Let Φt be the flow of X on U .
Then

Φt ◦ z−1(a1, · · · , zn) = z−1(a1 + t, a2, · · · , zn) (2.40)

and
d(Φ−t)

( ∂

∂zi

∣∣∣∣
q

)
=

∂

∂zi

∣∣∣∣
Φ−t(q)

(2.41)

for some q ∈ U and z(q) = (a1, · · · , zn). Hence,

d(Φ−t)
(
Y
∣∣∣
Φt(p)

)
=

n∑
i=1

bi
(
z−1(t, 0, · · · , 0)

) ∂
∂zi

∣∣∣∣
p

. (2.42)
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Now

d

dt

∣∣∣
t=0
d(Φ−t)

(
Y ◦ Φt(p)

))
=

n∑
i=1

d

dt

∣∣∣
t=0

(
bi
(
z−1(t, 0, · · · , 0)

) ∂
∂zi

∣∣∣∣
p

)
(2.43)

=
n∑
i=1

∂bi
∂z1

∂

∂zi

∣∣∣∣
p

= [X, Y ]

∣∣∣∣
p

. (2.44)

Remark 2.1. Let f : M → N be a diffeomorphism, and Y is a vector field on N . Then f ∗(Y )
is a vector field on M . Let p ∈M , we have f ∗(Y )

∣∣
p

= df−1Yf(p). Note that df
(
f ∗(Y )

)
= Y .

Exercise 2.3. If Ψt is the flow of Y on N and f : M → N is a diffeomorphism, then the
flow of f ∗(Y ) is f−1 ◦Ψt ◦ f .
Similarly, if Φt is the flow of X on M , then the flow of f∗(X) is f ◦ Φt ◦ f−1.

Theorem 2.9. If Φt is a flow of X and Ψt is a flow of Y , then [X, Y ] = 0 if and only if

Φt ◦Ψs = Ψs ◦ Φt (2.45)

for all t, s. Equivalently, we have

Φt ◦Ψs ◦ Φ−t ◦Ψ−s = Id. (2.46)

Corollary 2.10. Let c(t) = Ψ−t◦Φ−t◦Ψt◦Φt(q), then c(0) = q, c′(0) =) , and c′′(0) = 1
2
[X, Y ].

Theorem 2.11. Given vector fields X1, · · · , Xn on M which are linearly independent for
every p ∈M . Then there exists a coordinate (U, x) containing p such that X(q) = ∂

∂xi

∣∣∣
q
for

all q ∈ U if any only if [Xi, Xj] = 0.

2.3 Distributions

3 Lie groups and Lie algebras

3.1 Lie groups

Definition 3.1. A Lie group is a smooth manifold which also has the group structure and
the map G×G→ G defined by (a, b)→ ab−1 is smooth for a, b ∈ G.

Example 3.1. (Rn,+) is clearly a Lie group.

Example 3.2. GL(n) = {A ∈Mn(R) : detA 6= 0} as an open subset of Rn2 is a Lie group.

Example 3.3. SL(n,R), O(n), SO(n) are all Lie groups (are embedded submanifolds of
Rn2 .)

Theorem 3.1. If G is a Lie group, and H ⊂ G is a subgroup, then H is a Lie group.

6
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Corollary 3.2. Any subgroups of GL(n,R) defined by equations are Lie groups. For example,

O(n) = {A ∈ GL(n,R) : AAT = I}, (3.1)
U(n) = {A ∈ GL(n,C) : AĀT = I}, (3.2)

SU(n) = {A ∈ U(n) : detA = 1}. (3.3)

We call the subgroups of GL(n,R) by matrix groups.

Definition 3.2. The quaternion H is a four dimensional vector space defined by

H = {a+ bi+ cj + dk : a, b, c, d ∈ R} (3.4)

with relations i2 = j2 = k2 = ijk = −1. Since −1 = ijk, we have

−k = ijkk = ij(k2) = ij(−1), (3.5)
k = ij. (3.6)

All the other possible products can be determined by similar methods, resulting in

ij = k, ji = −k, (3.7)
jk = i, kj = −i, (3.8)
ki = j, ik = −j. (3.9)

The conjugate of q = a+ bi+ cj + dk ∈ H is q̄ = a− bi− cj − dk. By calculation we have
qq̄ = a2 + b2 + c2 + d2. Moreover, if q1, q2 ∈ H, then |q1 · q2| = |q1| · |q2|.

LetGL(n,H) be n×nmatrices overH which have inverses. In this case, detAB may not equals
to detA detB due to non-commutitivity of H. We define Sp(n) = {A ∈ GL(n,H) : AĀT = I}
to be a subgroup of GL(n,H).
If A ∈ U(n), then there exists B ∈ U(n) such that

BAB−1 = diag(z1, · · · , zn), |zk| = 1. (3.10)

If A ∈ O(n), A may not be diagonalizable. But there exists some B ∈ O(n) such that we can
write

BAB−1 =


Rθ1 0 0 · · ·
0 Rθ2 0 · · ·
0 ai2

. . . · · ·
...

...
... . . .

 , (3.11)

where Rθi is either ±1 or the usual rotation

Rθi =

(
cos θi sin θi
− sin θi cos θi

)
. (3.12)

Exercise 3.1. ForA ∈ Sp(n), does there existB ∈ Sp(n) such thatBAB−1 = diag(a1, · · · , an)
for qi ∈ H and |qi| = 1?

7
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Theorem 3.3 (Hilbert’s 5th problem). Suppose G is a topological group, i.e. G is both
a group and topological manifold, and the map G × G → G defined by (a, b) → ab−1 is
continuous, then G is a Lie group.

Theorem 3.4. Assume G is a C2 Lie group, then G has a unique analytic structure.

3.2 Lie algebras

Let G be a Lie group and g ∈ G. The left translation by g is a map Lg : G→ G defined by
Lg(h) = gh, for any h ∈ G. Lg is in fact a diffeomorphism on G, and we have (Lg)

−1 = Lg−1 ,
Lg ◦ Lh = Lgh. Similarly, we can define the right translation Rg : G→ G by Rg(h) = hg.
Note that Lg ◦Rg−1 is the conjugate map.

Definition 3.3. Let X be a vector field on a Lie group G. X is called left invariant if it is
smooth and Lg∗X = X, that is,

(dLg)h
(
X(h)

)
= X(gh) (3.13)

for any g, h ∈ G.

If X and Y are left invariant, then [X, Y ] is also left invariant. Since X and Lg∗X are
Lg-related,

Lg∗
(
[X, Y ]

)
= [Lg∗(X), Lg∗(Y )]. (3.14)

Definition 3.4. Let V be a vector space, then g = (V, [ , ]) is called a Lie algebra , if the
bracket [ , ] : V × V → V satisfies

1. [v, w] = −[w, v]. (anti-commutativity)

2. [ , ] is bilinear.

3. [[v, w], z] + [[w, z], v] + [[z, v], w] = 0. (Jabobi identity)

for all v, w, z ∈ V .

Example 3.4. The euclidean space R3 with the cross product as bracket is a Lie algebra.

Example 3.5. Mn(R) is a Lie algebra with the bracket

[A,B] = AB −BA (3.15)

for A,B ∈Mn(R).

Example 3.6. Let X be the collection of C∞ vector fields on M , then X is an infinite
dimensional Lie algebra.

Theorem 3.5 (Ado). If g = (V, [ , ]) is a finite dimensional Lie algebra, then there exists a
subalgebra of Mn(R) that is isomorphic to g.

If G is a Lie group, then the set of left invariant vector fields form a Lie algebra.
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Theorem 3.6. Let G be a Lie group. For each v ∈ TeG, there exists a unique left invariant
vector field X such that X(e) = v. Hence the dimension of left invariant vector fields on G
equals the dimension of G. In fact, X → X(e) is an isomorphism.

Proof. Let v ∈ TeG. Define X(g) = (dLg)e(v). We need to show that X is left invariant and
smooth. Since

(dLg)h
(
X(h)

)
=(dLg)h

(
(dLh)e(v)

)
(3.16)

=(dLgh)e(v) = X(gh), (3.17)

Hence X is left invariant. Then we need show X is a smooth vector field. It suffices to
show Xf is smooth whenever f ∈ C∞(G). Let γ : (−ε, ε)→ G be a smooth curve such that
γ(0) = e, γ′(0) = v. Then we have

Xf(g) = (dLg)e(v)f = v(f ◦ Lg) (3.18)
= γ′(0)(f ◦ Lg) (3.19)

=
d

dt

∣∣∣
t=0

(
f ◦ Lg ◦ γ(t)

)
. (3.20)

We can define φ : (−ε, ε)×G→ R by

φ(t, g) = f ◦ Lg ◦ γ(t). (3.21)

Then we see that Xf(g) = ∂φ
∂t

(0, g). Since f , γ, and the left multiplication Lg are all smooth,
it follows that ∂φ

∂t
(0, g) is smooth.

The injectivity of X → v ∈ g is clear. Hence the set of left invariant vector fields on G is
isomorphic to g = TeG.

Proposition 3.7. Let gl(n,R) = Te
(
GL(n,R)

)
, then gl(n,R) = Mn(R) with bracket [A,B] =

AB −BA for A,B ∈ gl(n,R).

Proof. Let X ∈ Te
(
GL(n,R)

)
'Mn(R), and X̃ be the induced left invariant vector field of

X on GL(n,R). Let A ∈ GL(n,R). Then

X̃(A) = (dLA)eX = A ·X. (3.22)

Let xij be coordinate functions in Mn(R), then xij(A) = Aij. Since X̃ is a vector field, we
can write it as

X̃ =
∑

X̃(xij)
∂

∂xij
. (3.23)

Note that

X̃
(
xij(A)

)
= (dxij)A

(
X̃(A)

)
(3.24)

= xij
(
X̃(A)

)
= (AX)ij. (3.25)

Hence we have that X̃(e) = X, X̃(A) =
∑

(AX)ij
∂

∂xij
. Let Y ∈ Te

(
GL(n,R)

)
and Ỹ be the

9
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corresponding induced left invariant vector field. Then

[X̃, Ỹ ]e = (X̃Ỹ − Ỹ X̃)e (3.26)

= X̃e(A→ AY )− Ỹe(A→ AX). (3.27)

Using the coordinate function

[X̃, Ỹ ]e(xij) = X̃e(A→ AY )ij − Ỹe(A→ AX)ij (3.28)
= (XY − Y X)ij. (3.29)

Hence [X̃, Ỹ ]e = XY − Y X. The result then follows from the previous theorem.

Theorem 3.8. Let G ⊂ GL(n,R) be a closed subgroup (hence a Lie group). Then g = TeG
has bracket [A,B] = AB −BA for A,B ∈ g.

Example 3.7. Consider SL(n,R) ⊂ GL(n,R). We have

sl(n,R) = Te
(
SL(n,R)

)
⊂ Te

(
GL(n,R)

)
= gl(n,R). (3.30)

In fact,
sl(n,R) = {A ∈Mn(R) : tr(A) = 0}. (3.31)

In order to prove the above proposition, we take a path A(t) ∈ SL(n,R) with A(0) = I,
A′(0) ∈ sl(n,R). Fact: Since D(det)A(B) = det(A) · tr(B), we have D(det)I(B) = tr(B).
Using this fact,

d

dt

∣∣∣
t=0

detA(t) = 0 = D(det)I
(
A′(0)

)
(3.32)

= tr
(
A′(0)

)
. (3.33)

Therefore Te
(
SL(n,R)

)
⊂ {A ∈ Mn(R) : trA = 0}. The equality follows by counting the

dimension. More generally, we can prove the above result by using the exponential map.

Definition 3.5. Let A be a complex n×n matrix, we define the exponential map of A by

eA = exp(A) = I + A+
A2

2!
+ · · ·+ An

n!
+ · · · (3.34)

It is easy to show that the above series converges absolutely and uniformly on any compact
set |A| < α for any α > 0.

Proposition 3.9. The exponential map has the following properties:

1. det eA = etr(A).

2. eA · eB = eA+B = eB · eA if any only if AB = BA.

3. BeAB−1 = eBAB
−1.

4. BeABT = eBAB
T .

10
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Note that in MnR, the matrices that can be diagonalized are dense.

Example 3.8. Let o(n) be the Lie algebra of O(n), then o(n) = {A : A + AT = 0}. Note
that SO(n) is a component of O(n) that contains the identity. Let A(t) be a path in SO(n)
such that A(0) = I and A′(0) ∈ o(n), then A(t)AT (t) = I. Differentiate both sides at 0 gives(

A′(t)A(t) + A(t)
(
AT (t)

)′)∣∣∣
t=0

= 0, (3.35)

since A(0) = I,
A′(0) +

(
AT (0)

)′
= 0. (3.36)

This shows that if A ∈ o(n), then A + AT = 0. For the other direction, let A ∈ o(n), and
define the map t 7→ etA = B(t). From the definition of the exponential map,

etA == I + tA+
t2A2

2!
+ · · ·+ tnAn

n!
+ · · · (3.37)

we have B(0) = I and B′(0) = A. Then

B(t)BT (t) = etAetA
T

= etA+tAT = e0 = I (3.38)

since A and AT commute. We are done.

Theorem 3.10. If G ⊂ GL(n,R), so g is a subalgebra of gl(n,R). Then A ∈ g if and only
of eA ∈ G.

3.3 Homomorphisms

Definition 3.6. A map φ : H → G is Lie group homomorphism if it is a group homo-
morphism and it is smooth.

Definition 3.7. H ⊂ G is a Lie subgroup if the inclusion map H ↪→ G is both a Lie group
homomorphism and a 1-1 immersion, i.e. a 1-1 immersed submanifold + subgroup.

Theorem 3.11. Let H, G be Lie groups with Lie algebras h and g respectively, and let
φ : H → G be a homomorphism. Then X and dφ(X) are φ-related, and (dφ)e : h→ g is a
Lie algebra homomorphism, i.e.

(dφ)e([X, Y ]) = [(dφ)e(X), (dφ)e(Y )] (3.39)

for X, Y ∈ h.

Proof. Let X, Y ∈ h = TeH. Define X̃, Ỹ be the corresponding left invariant vector fields
with X̃(e) = X and Ỹ (e) = Y . Note that (dLg)eX = X̃(g) for g ∈ H. First we show that X̃
and ˜(dφ)eX are φ - related, i.e.

(dφ)g
(
X̃(g)

)
= ˜(dφ)eX

(
φ(g)

)
(3.40)

11
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for all g ∈ H.
By definition,

(dφ)g
(
X̃(g)

)
= (dφ)g

(
(dLg)e(X)

)
(3.41)

= d(φ ◦ Lg)e(X). (3.42)

Since
φ
(
Lg(h)

)
= φ(gh) = φ(g)φ(h) = Lφ(g)

(
φ(h)

)
, (3.43)

we have φ ◦ Lg = Lφ(g) ◦ φ. Therefore,

d(φ ◦ Lg)e(X) =d
(
Lφ(g) ◦ φ

)
e
(X) (3.44)

=(dLφ(g))(dφ)e(X) (3.45)

= ˜(dφ)eX ◦ φ(g), (3.46)

since (dφ)e(X) ∈ g. Hence we have proved that X̃ and ˜(dφ)eX are φ - related, which implies
that X and dφ(X) are φ -related.
Now we need show

(dφ)e([X̃, Ỹ ]e) = [ ˜(dφ)e(X), ˜(dφ)e(Y )]e. (3.47)

This follow directly from X, Y and dφ(X), dφ(Y ) are φ -related respectively.

Corollary 3.12. If H ⊂ G is a Lie subgroup, then h ⊂ g is a subalgebra.

Example 3.9. Let G ⊂ GL(n,R) be a Lie subgroup (i.e. a closed subgroup), then for
A,B ∈ g, [A,B] = AB −BA. Moreover, g ⊂ gl(n,R).

Example 3.10. The unit circle S1 = {z ∈ C : |z| = 1} a Lie group.

Example 3.11. T 2 = S1 × S1 is also a Lie group. We can also view T 2 = R2/Z2. If H has
irrational slope, then it is a 1-1 immersed submanifold.

Theorem 3.13. Let G be a Lie group with Lie algebra g, and h ⊂ g be a Lie subalgebra.
Then there exists a unique connected Lie subgroup H ⊂ G such that the Lie algebra of H is h.

Proof. Let ∆ be the distribution of G such that ∆e = h ∈ h, and ∆ is left invariant, i.e.

∆g = (dLg)e(h). (3.48)

∆ is a smooth distribution since it is globally spanned by left invariant vector fields X̃i on
G such that X̃i(e) ∈ h = ∆e and X̃(g) ∈ ∆g. Since [X̃, Ỹ ] is left invariant and [X̃, Ỹ ] =
[X, Y ] ∈ h which follows from the fact that h is a subalgebra, i.e. X, Y ∈ h⇒ [X, Y ]g ∈ h, ∆
is involutive hence integrable.
Let H be a maximal leaf of ∆ through e ∈ G, then this leaf is unique. We will show H is a
subgroup of G. Let h ∈ H, then h−1 ∈ G. We claim that Lh−1(H) = H.

Lemma 3.14. For any F being a leaf of ∆ in G, then Lg(F) is also a leaf, where g ∈ G.

12
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Proof of the lemma. Since F ⊂ G, T (F )g = ∆g, so

T
(
Lg(F )

)
ḡ

= d(Lg)
(
T (F )ḡ

)
= d(Lg)∆ḡ = ∆gḡ. (3.49)

By this lemma Lg sends leaves of ∆ into leaves of ∆. So Lh−1(H) is a leaf of ∆. Since
Lh−1(h) = e, Lh−1(H) is a leaf through e ∈ G. By uniqueness of the maximality, Lh−1(H) = H.
Therefore, if h, g ∈ H, we have h−1g ∈ H. We see that H is an abstract subgroup of G, hence
a Lie subgroup.

Corollary 3.15. Let φ, ψ : H → G be two Lie group homomorphisms with (dφ)e = (dψ)e,
then φ = ψ.

Proof. Let graph(φ) = {
(
h, φ(h)

)
∈ H ×G : h ∈ H}. Note that H ×G is a Lie group, φ is a

homomorphism iff graph(φ) is a subgroup of H ×G, since(
h, φ(h)

)
·
(
h̃, φ(h̃)

)
=
(
hh̃, φ(h)φ(h̃)

)
=
(
hh̃, φ(hh̃)

)
. (3.50)

Also, l : h → g is a Lie algebra homomorphism iff graph(l) = {
(
h, l(h)

)
: h ∈ h} is a Lie

subalgebra of h× g.
Now graph(φ), graph(ψ) are Lie subgroups of H ×G, and graph(dφ) is a Lie subalgebra of
g. We have

Te
(
graph(φ)

)
= graph

(
(dφ)

)
e
, (3.51)

since if we let
(
g(t), φ

(
g(t)

))
) and g(0) = e, then graph

(
g′(0)

)
=
(
g′(0), φ

(
g′(0)

))
.

Now graph(φ) and graph(ψ) are two Lie subgroups of H ×G and have the same Lie algebra.
By uniqueness, φ = ψ.

Question 1 Given a Lie algebra g, does there exist a Lie group G which has the Lie algebra
g? This question is answered by Ado’s theorem.

Question 2 Given two Lie groups H and G, let φ : h→ g be a homomorphism of the Lie
algebras of H and G respective. Does there exist a homomorphism ψ : H → G with dψ = φ?

Question 3 Given g, is G unique? The answer is no. For example, SU(2), SO(3), and
Sp(1) have the same Lie algebra. We have SU(2) ' Sp(1), whereas Sp(1) 7→ SO(3) defined
by q 7→ {v → qvq̄} is a 2-1 map.

Exercise 3.2. Let q ∈ Sp(1), and write q = a+ bj for a, b ∈ C. Show that(
a −b̄
b ā

)
∈ SU(2).

13
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4 Differential forms

5 Integration on manifolds

5.1 Integration

Let f : Rn → Rn, and U ⊂ Rn, then∫
U

f dx1 · · · dxn =

∫
· · ·
∫

(f dx1)dx2 · · · dxn. (5.1)

Let g : U → V be a local diffeomorphism. Let U, V ⊂ Rn be open. Applying the change of
variables formula, we get∫

V

f dx1 · · · dxn =

∫
g(V )

f ◦ g | detDg|dy1 · · · dyn. (5.2)

Now let M be an oriented n-dimensional manifold. Let ω ∈ Ωn(M), our aim is to define∫
M
ω.

Locally, we can write ω = fdx1 · · · dxn, where (U, x) is a local coordinate. Then we define∫
U

ω =

∫
x(U)

f ◦ x−1 dx1 · · · dxn. (5.3)

In another coordinate (V, y) for U ∩ V 6= ∅. Suppose that supp ω ⊂ U ∩ V , then ω ∈
Ωn(U),Ωn(V ). By previous definition,∫

U

ω =

∫
x(U)

f ◦ x−1 dx1 · · · dxn; (5.4)∫
V

ω =

∫
y(V )

f ◦ y−1 dy1 · · · dyn. (5.5)

Let g = x ◦ y−1 : y(U ∩ V )→ x(U ∩ V ), then it is a diffeomorphism. The pull-back

g∗(dx1 ∧ · · · ∧ dxn) =D(g)∗(dx1 ∧ · · · ∧ dxn) (5.6)
= det(Dg)(dy1 ∧ · · · ∧ dyn). (5.7)

Lemma 5.1. Let x = g(y), Dg preserves the orientation, then∫
g(U∩V )

ω =

∫
U∩V

g∗(ω). (5.8)

14
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Proof.

g∗(ω) = g∗(fdx1 ∧ · · · ∧ dxn) (5.9)
= D(g)∗(fdx1 ∧ · · · ∧ dxn) (5.10)
= det(Dg)(f ◦ x−1dx1 ∧ · · · ∧ dxn) (5.11)
= det(Dg)(f ◦ x−1 ◦ x ◦ y−1dy1 ∧ · · · ∧ dyn) (5.12)
= det(Dg)(f ◦ y−1dy1 ∧ · · · ∧ dyn). (5.13)

Then we just need to app ly the change of variables formula as before.

Let M be an orientable manifold with oriented atlas (Uα, xα). Choose a partition of unity
{φα} subordinate to {Uα}, with φα : M → R,

∑
φα = 1, and supp φα ⊂ Uα. If ω ∈ Ωn(M)

has compact support, we define∫
M

ω =

∫ (∑
α

φα

)
ω =

∑
α

(∫
Uα

φαω
)
, (5.14)

where ∫
U

ω =

∫
x(U)

f ◦ x−1 dx1 ∧ · · · ∧ dxn (5.15)

as before. We need to show that this formula is independent of the choice of the partition of
unity and the coordinates. Suppose we have another partition of unity {ψβ} subordinate to
charts {Vβ}. ∫

M

ω =
∑
α

(∫
Uα

φαω
)

(5.16)

=
∑
α

(∫
Uα

(∑
β

ηβ
)
φαω

)
(5.17)

=
∑
α,η

(∫
Uα∩Vβ

ηβφαω
)

(5.18)

=
∑
η,α

(∫
Uα∩Vβ

φαηβω
)

(5.19)

=
∑
β

(∫
Vβ

(∑
α

φα
)
ηβω

)
(5.20)

=
∑
β

(∫
Vβ

ηβω
)
. (5.21)

Theorem 5.2. Let F : M → N be an orientation preserving diffeomorphism, ω ∈ Ωn(N).
Then we have ∫

M

f ∗(ω) =

∫
f(M)=N

ω. (5.22)
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Example 5.1 (line integrals in R3). Let c : I → R3 be a smooth parametrized curve, where
I ⊂ R is an interval. Let f : Nk →Mn, k < n be a smooth map, and ω ∈ Ωn(M). We define∫

Nk

f ∗(ω) =

∫
f(Nk)

ω. (5.23)

Hence we could define the line integral of ω = f1dx+ f2dy + f3dz over c in R3 by∫
C

f1dx+ f2dy + f3dz =

∫
I

c∗(ω). (5.24)

Note that c =
(
x(t), y(t), z(t)

)
is independent of parametrization, and c′ = (x′, y′, z′). So we

have ∫
I

c∗(ω) =

∫
I

f1
dx

dt
dt+ f2

dy

dt
dt+ f3

dz

dt
dt (5.25)

=

∫
I

(∑
i

fi
dxi
dt

)
dt. (5.26)

Example 5.2 (surface integral in R3). Let f : U ⊂ R3 → R, and x(s, t) be a smooth
parametrization of M2 ∈ R3. Then the surface integral of f is∫ 2

M

fdA =

∫
R2(s,t)

x∗(fdA), (5.27)

where dA is the area element of M2

dA = ‖dx
ds
× dx

dt
‖dsdt. (5.28)

5.2 Stokes’ theorem

Let Hn = {(x1, · · · , xn) ∈ Rn : xn ≥ 0)} be the upper half plane. Then the boundary of
Hn is ∂Hn = {xn = 0} ' Rn−1. We say M is a manifold with boundary ∂M if for each
p ∈ ∂M , there exist coordinates (U, x), (V, y) of p, such that x : U → Hn, y : V → Hn are
homeomorphisms, x(p), y(p) ∈ ∂Hn, moreover, x ◦ y−1 : Hn → Hn is a diffeomorphism in the
interior of Hn and x ◦ y−1(∂Hn) ⊂ ∂Hn.
An orientation on M induces an orientation on ∂M . In fact, let ∂

∂x1
, · · · , ∂

∂xn
∈ TpM ,

then ∂
∂x1
, · · · , ∂

∂xn−1
∈ Tp(∂M) induces an orientation on ∂M . Conversely, let v1, · · · , vn−1 ∈

Tp(∂M) ⊂ TpM be an oriented basis, and let ~n is the outer normal vector. Then v1, · · · , vn−1, ~n
is an oriented basis for TpM .

Theorem 5.3 (Stokes’). Let M be an orientable manifold with boundary ∂M . We have∫
M

dω =

∫
∂M

ω. (5.29)

16



Geometric analysis I 5 INTEGRATION ON MANIFOLDS

Let i : ∂M →M be a smooth map which is an identity when restricted to ∂M , then we have
i∗(ω) ∈ Ωn−1(∂M), and ∫

M

dω =

∫
∂M

i∗(dω) =

∫
∂M

ω. (5.30)

Theorem 5.4 (Brower fixed point theorem). Let Bn = {(x1, · · · , xn) ∈ Rn :
∑n

i=1 x
2
i ≤ 1}.

Let f : Bn → Bn be a C∞ map, then there exists a point x ∈ Bn such that f(x) = x.

Proof. Suppose f has no fixed points. Let j : ∂Bn → Bn such that j
∣∣
∂Bn

= Id, where j(x) is
defined to be the intersection of ∂Bn and the ray starting from f(x) through x. If f is C∞,
then j is C∞. We need to choose a ω ∈ Ωn(B) such that

∫
∂Bn

ω > 0, then we have

0 6=
∫
∂Bn

ω =

∫
∂Bn

j∗(ω) (5.31)

since j
∣∣
∂Bn

= Id. Since j∗(dω) ∈ Ωn(∂Bn), j∗(dω) = 0. Therefore, by Stokes’ theorem,∫
∂Bn

j∗(ω) =

∫
Bn
d
(
j∗(ω)

)
=

∫
Bn
j∗(dω) = 0, (5.32)

which gives a contradiction.

Next we show that we can find such a ω ∈ Ωn(B) with
∫
∂Bn

ω > 0.

Definition 5.1. ω ∈ Ωn(Mn) is called a volume form if ωp(v1, · · · , vn) > 0 for every
p ∈Mn, where v1, · · · , vn is a positively oriented basis of TpMn.

Let Mn be compact, we claim that for any volume form ω,
∫
Mn ω > 0. By definition,∫

Mn

ω =

∫
Uα

∑
α

(φαω), (5.33)

where {φα} is a partition of unity subordinate to charts {Uα} of Mn. Since φα ≥ 0,
φαωp(v1, · · · , vn) ≥ 0 for every p.

∑
φα = 1 implies that for any p ∈Mn, there exists an α

such that φα(p) > 0. So ∫
Uα

φαω > 0. (5.34)

Note that (x−1
α )∗(φαω) = fdx1 ∧ · · · ∧ dxn, and we have f(p) > 0 and f ≥ 0. Now, since∑

β φβω ≥ 0 and
∫
φαω > 0,

∑
β(
∫
Uβ
φβω) > 0.

Proposition 5.5. There exists a volume form ω ∈ Ωn(Mn) if and only if Mn is orientable.

Proof. (⇐) Clear.
(⇒) Given ω ∈ Ωn(M), define v1, · · · , vn to be oriented if ω(v1, · · · , vn) > 0. If w1, · · · , wn is
oriented, and vi = Lwi, then detL > 0. Since L∗(ω) = (detL)ω,

L∗(ω)(v1, · · · , vn) = ω(Lw1, · · · , Lwn) = (detL)ω(w1, · · · , wn). (5.35)

Hence ω(w1, · · · , wn) > 0.
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Theorem 5.6. Let Mn be a compact manifold with ∂M 6= 0, then there exists no map
j : M → ∂M such that j

∣∣
∂M

= Id. (j is a retraction.)

Proof of the Stokes’ theorem

Proof. (a) Locally, ω ∈ Ωn−1(Rn). Let supp(ω) ⊂ U , where U ∈ Hn is an open set such that
∂Ū is compact. We can write ω =

∑
i fidx1 ∧ · · · d̂xi · · · ∧ dxn, so

dω =
∑
i

dfi ∧ dxi ∧ dx1 ∧ · · · ∧ dxn (5.36)

=
∑
i,j

∂fi
∂xj

dxj ∧ dx1 ∧ · · · ∧ dxn (5.37)

=
∑
i,j

∂fi
∂xj

dxj ∧ dx1 ∧ · · · ∧ dxn (5.38)

(5.39)
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