zq216@cam.ac.uk

DISTRIBUTION THEORY

Dr. • Lent 2015 • University of Cambridge

Last Revision: March 27, 2016

Table of Contents

1	Test functions and distributions	1
2	Distributions of compact support	1
3	Tempered distributions and Fourier transforms3.1Functions with rapid decay3.2Fourier transform	

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 Test functions and distributions

2 Distributions of compact support

3 Tempered distributions and Fourier transforms

3.1 Functions with rapid decay

We need a new space of functions.

Definition 3.1 (Schwartz space). The space $\mathcal{S}(\mathbb{R}^n)$ consists of all smooth functions $\phi : \mathbb{R}^n \to \mathbb{C}$ such that

$$\|\phi\|_{\alpha,\beta} := \sup_{x} |x^{\beta} D^{\alpha} \phi(x)| < \infty$$
(3.1)

for multi-indices α, β . Note that $\|\cdot\|_{\alpha,\beta}$ are seminorms. We say a sequence $\{\phi_m\}_{m\geq 1}$ tends to 0 in $\mathcal{S}(\mathbb{R}^d)$ if $\|\phi_m\|_{\alpha,\beta} \to 0$ for each α, β .

A Typical Schwartz function is the Gaussian $\phi(x) = e^{-|x|^2}$. We know that ϕ and its derivatives tend to zero faster than any $(1 + |x|^2)^{-N}$ for any $N \ge 0$.

Definition 3.2. A linear map $u : \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ belongs to $\mathcal{S}'(\mathbb{R}^n)$, the space of **tempered** distributions, if there exists constants C, N such that

$$| < u, \phi > | \leq_{|\alpha|, |\beta| \leq N} C ||\phi||_{\alpha, \beta}$$

$$(3.2)$$

for all $\phi \in \mathcal{S}(\mathbb{R}^n)$.

Exercise 3.1. Provide an equivalent definition using the sequential continuity.

3.2 Fourier transform

We have the following inclusion of spaces: $D(\mathbb{R}_n) \hookrightarrow \mathcal{S}(\mathbb{R}^n) \hookrightarrow \mathcal{E}(\mathbb{R}^n)$, and conversely $\mathcal{E}'(\mathbb{R}_n) \hookrightarrow \mathcal{S}'(\mathbb{R}^n) \hookrightarrow D'(\mathbb{R}^n)$.

Recall the **Fourier transform** of an integrable function $\phi \in L^1(\mathbb{R}^d)$ is defined by

$$\hat{\phi}(\lambda) = \int e^{-i\lambda \cdot x} \phi(x) dx.$$
(3.3)

Lemma 3.1. If $\phi \in L^1(\mathbb{R}^n)$, then $\phi \in C(\mathbb{R}^n)$.

Proof. Suppose $\{\lambda_m\}_{m\geq 1}$ is a sequence such that $\lambda_m \to \lambda$ in \mathbb{R}^n , then

$$\lim_{m \to \infty} \hat{\phi}(\lambda_m) = \lim_{m \to \infty} \int e^{-i\lambda_m \cdot x} \phi(x) dx \tag{3.4}$$

$$= \int \lim_{m \to \infty} e^{-i\lambda_m \cdot x} \phi(x) dx \tag{3.5}$$

$$= \int \lim_{m \to \infty} e^{-i\lambda \cdot x} \phi(x) dx = \hat{\phi}(\lambda)$$
(3.6)

where we have used the dominate convergent theorem in the second equality since $|e^{-i\lambda_m \cdot x}\phi(x)| \leq |\phi(x)| \in L^1(\mathbb{R}^n)$. Hence $\hat{\phi}$ is continuous.

Remark 3.1. $\hat{\phi}$ is bounded since $|\hat{\phi}| \leq \int |\phi(x)| dx$.

Definition 3.3. For $\phi \in L^1(\mathbb{R}^n)$, define the Fourier transform of ϕ by setting $(\hat{\phi})(\lambda) = \int e^{-i\lambda \cdot x} \phi(x) dx$.

Note that if $\phi \in \mathcal{S}(\mathbb{R}^n)$, then $\phi \in L^1(\mathbb{R}^n)$. Indeed,

$$\int |\phi(x)| dx = \int (1+|x|)^{-N} (1+|x|)^N |\phi(x)| dx$$
(3.7)

$$\leq C \sum_{|\alpha| \leq N} \|\phi\|_{\alpha,0} \int (1+|x|)^{-N} dx < \infty$$
(3.8)

for N sufficiently large.

So if $\phi \in \mathcal{S}(\mathbb{R}^n)$, from lemma, we know that ϕ is continuous. In fact, we can say more.

Lemma 3.2. For $\phi \in \mathcal{S}(\mathbb{R}^n)$, we have

$$\widehat{(D^{\alpha}\phi)} = \lambda^{\alpha}\hat{\phi}(\lambda) \tag{3.9}$$

$$\left(\widehat{x^{\beta}\phi(x)}\right) = (-D_{\lambda})^{\beta}\hat{\phi}(\lambda)$$
 (3.10)

for each multi-indices α , β .

Note that $D = i\partial$.

Proof. Since $|x^{\alpha}D^{\beta}\phi| \to 0$ rapidly as $|x| \to \infty$ for all α, β . Using integration by parts,

$$\widehat{(D^{\alpha}\phi)}(\lambda) = \int e^{-i\lambda \cdot x} D_x^{\alpha}\phi(x)$$
(3.11)