
Resumé on Hilbert spaces and Spectral Theory

1 Hilbert spaces

I assume you know what a Hilbert space is and that you are familiar with
basic Hilbert space geometry (Parallelogram Law, orthogonality, Pythagoras’s
Theorem, orthogonal complements, etc). We recall the following result.

1.1 If Y is a closed subspace of a Hilbert space H, then H is the orthogonal
direct sum of Y and Y ⊥ (written H = Y ⊕ Y ⊥).

1.2 Corresponding to the orthogonal decomposition Y ⊕ Y ⊥ of H is the map

P : H → H given by P (y + z) = y (y ∈ Y, z ∈ Y ⊥).

This is a bounded linear map with imP = Y and kerP = Y ⊥. It is called the
orthogonal projection of H onto Y .

1.3 Riesz Representation Theorem (Yes, another one.) For each f ∈ H∗
there is a unique y ∈ H such that f(x) = 〈x, y〉 for all x ∈ H. The map f 7→ y
is an isometric, conjugate-linear isomorphism of H∗ onto H.

1.4 A sesquilinear form on a (complex) Hilbert space H is a map θ : H×H → C
satisfying for all x, y, z ∈ H and λ, µ ∈ C that

(i) θ(λx+ µy, z) = λθ(x, z) + µθ(y, z) (linearity in first variable), and

(ii) θ(x, λy+µz) = λ̄θ(x, y) + µ̄θ(x, z) (conjugate-linearity in second variable).

The sesquilinear form θ is called a hermitian form if in addition it satisfies

(iii) θ(y, x) = θ(x, y) for all x, y ∈ H.

Note that (i) and (iii) imply (ii). A sesquilinear form θ is bounded if there is a
constant C > 0 such that

|θ(x, y)| 6 C‖x‖‖y‖ for all x, y ∈ H .

This is equivalent to θ being continuous. The smallest C that works is denoted
by ‖θ‖. Note that

‖θ‖ = sup
{
|θ(x, y)| : x, y ∈ H, ‖x‖ 6 1, ‖y‖ 6 1

}
.

E.g., the inner product 〈·, ·〉 is a bounded hermitian form on H with norm 1.

1.5 Theorem Let θ be a bounded sesquilinear form on H. Then there is a
unique map T : H → H such that

(1) θ(x, y) = 〈Tx, y〉 for all x, y ∈ H .

Moreover, T ∈ B(H) and ‖T‖ = ‖θ‖.

Proof. Fix x ∈ H. The map y 7→ θ(x, y) is a bounded linear map of norm at
most ‖θ‖‖x‖. By the Riesz Representation Theorem, there exists some Tx ∈ H
such that θ(x, y) = 〈y, Tx〉 for all y ∈ H. This defines a map T : H → H
satisfying (1). Given x, y, z ∈ H and λ, µ ∈ C, we have

〈T (λx+ µy), z〉 = θ(λx+ µy, z) = λθ(x, z) + µθ(y, z)

= λ〈Tx, z〉+ µ〈Ty, z〉
= 〈λTx+ µTy, z〉
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Since z was arbitrary, it follows that T (λx+µy) = λTx+µTy, and T is linear.
Next,

‖Tx‖2 = 〈Tx, Tx〉 = θ(x, Tx) 6 ‖θ‖‖x‖‖Tx‖ .
Hence T is bounded with ‖T‖ 6 ‖θ‖. Conversely,

|θ(x, y)| = |〈Tx, y〉| 6 ‖Tx‖‖y‖ 6 ‖T‖‖x‖‖y‖

by Cauchy-Schwarz. Thus ‖θ‖ = ‖T‖.
Finally, to show uniqueness, assume that 〈Tx, y〉 = 〈Sx, y〉 for all x, y.

Putting y = Tx− Sx yields ‖Tx− Sx‖ = 0, and hence T = S.

1.6 Adjoints For T ∈ B(H) there is a unique map T ∗ : H → H such that
〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. Moreover, T ∗ ∈ B(H) and ‖T ∗‖ = ‖T‖.

Proof. Apply Theorem 1.5 to θ(x, y) = 〈x, Ty〉.

1.7 Remark T ∗ : H → H is called the adjoint of T . By the Riesz Represen-
tation Theorem, T ∗ can be viewed as a map H∗ → H∗, and then it is nothing
else but the dual operator of T .

1.8 Properties of adjoints Let S, T ∈ B(H) and λ, µ ∈ C.

(i) (λS + µT )∗ = λ̄S∗ + µ̄T ∗

(ii) (ST )∗ = T ∗S∗

(iii) T ∗∗ = T

(iv) ‖T ∗T‖ = ‖T‖2

1.9 An operator T ∈ B(H) is

(i) hermitian if T ∗ = T

(ii) unitary if TT ∗ = T ∗T = I

(iii) normal if TT ∗ = T ∗T .

Examples of hermitian operators include orthogonal projections. An operator
is unitary if and only if it is isometric and surjective. Examples of normal
operators include all hermitian and unitary operators.

1.10 Note If θ in Theorem 1.5 is hermitian, then the corresponding operator
T is also hermitian.

2 Spectral Theory

Let X be a (non-zero) complex Banach space and T ∈ B(X). The spectrum of
T is the set

σ(T ) = {λ ∈ C : λI − T not invertible} .
This is a special case of the spectrum of an element of a unital Banach algebra
as defined in Chapter 5 of the course. In particular, the spectrum of T is a
non-empty, compact subset of {λ ∈ C : |λ| 6 ‖T‖} (Theorem 5.3). Moreover
(Theorem 5.6), the spectral radius r(T ) of T satisfies

r(T ) = sup
λ∈σ(T )

|λ| = lim
n→∞

‖Tn‖1/n .
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2.1 We say λ is an approximate eigenvalue of T if there exists a sequence (xn)
in X with ‖xn‖ = 1 for all n ∈ N such that

(λI − T )xn → 0 as n→∞ .

The sequence (xn) is an approximate eigenvector for λ. The approximate point
spectrum of T is the set of all approximate eigenvalues of T , and is denoted by
σap(T ). We also define the point spectrum of T to be the set of all eigenvalues
of T and denote it by σp(T ). One clearly has

σp(T ) ⊂ σap(T ) ⊂ σ(T ) .

In general, these inclusions can be strict and the point spectrum can be empty
(unlike the spectrum). However, we have the following result. Here ∂A denotes
the boundary of a set A in a topological space X: ∂A = A \A◦.

2.2 Theorem We have ∂σ(T ) ⊂ σap(T ). In particular, σap(T ) 6= ∅.

Proof. Let λ ∈ ∂σ(T ). Then there is a sequence λn /∈ σ(T ) converging to λ. It
follows from Corollary 5.2(iii) of the course that∥∥(λnI − T )−1

∥∥→∞ as n→∞ .

Thus, there is a sequence (xn) of unit vectors such that∥∥(λnI − T )−1xn
∥∥→∞ as n→∞ .

Set

yn =
(λnI − T )−1xn∥∥(λnI − T )−1xn

∥∥ .
It is easy to check that (yn) is an approximate eigenvector for λ.

2.3 Theorem Let T ∈ B(X) be a compact operator. Let λ ∈ σap(T ) and λ 6= 0.
Then λ is an eigenvalue of T .

2.4 From now on H is a (non-zero) complex Hilbert space. For T ∈ B(H) we
have

σ(T ∗) = {λ̄ : λ ∈ σ(T )} .

If T is hermitian then σ(T ) ⊂ R. It follows that σ(T ) = σap(T ). This latter
fact holds also when T is a normal operator.

2.5 Theorem Let T ∈ B(H) be a compact hermitian operator. Then σ(T ) is
countable and if λ ∈ σ(T ), λ 6= 0, then λ is an eigenvalue whose eigenspace is
finite-dimensional: dim ker(λI − T ) <∞.

2.6 Spectral Theorem Let T ∈ B(H) be a compact hermitian operator. Then
there is an orthonormal sequence x1, x2, . . . (finite or infinite) of eigenvectors of
T with non-zero eigenvalues λ1, λ2, . . . , respectively, such that

T
(∑

anxn + z
)

=
∑

λnanxn

for all scalars an, and all z ∈ {xn : n ∈ N}⊥.

2.7 Remark The above holds for compact normal operators as well.
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