
CHAPTER 3

Ellipticity: Laplace, Poisson and di↵usion equations

1. Toolbox: Sobolev spaces

1.1. Definitions. Let us start, as a reference point, by defining the standard scale
of Ck spaces (interpolating with Hölder regularity in between integer indices):

Definition 1.1. We define C✓ for ✓ 2 R+ as a subspace C [✓], with [✓] the integer
part of ✓, where the [✓]-order derivatives are (✓ � [✓]) Hölder continuous. In formula
this means:

kukC✓ :=
X

|↵|[✓]

k@↵ukL1(R`) +
X

|↵|=[✓]

sup
x 6=y2R`

|@↵u(x)� @↵u(y)|
|x� y|✓�[✓]

.

Comparatively, Sobolev spaces are tools that allow measuring regularity by means
of integrals (as opposed to pointwise as for Ck spaces):

Definition 1.2. We define the Sobolev space W s,p(R`) on R`, for s 2 N, as a subset
of Lp(R`) by building the completion of the vector space C1

c (R`) (infinitely di↵erentiable
with compact support) endowed with the norm

kgkW s,p(R`) :=

0

@

X

|↵|s

k@↵
x gk2Lp(R`)

1

A

1
2

.

It means:

W s,p(R`) = C1
c (R`)

k·k
Ws,p(R`) ⇢ Lp(R`).

We write Hs(R`) = W s,2(R`) in the case p = 2.

Remark 1.3. In the case p = 2 we can give two other definitions:
A second definition is: g 2 L2(R`) belongs to Hs(R`) i↵ there is a constant C > 0

so that

8' 2 C1
c (R`), 8 |↵|  s,

�

�

�

�

ˆ
R`

g(x)@↵
x'(x) dx

�

�

�

�

 Ck'kL2(R`)

and the smaller such constant is precisely the Hs(R`) norm of g (this is the definition
used by Leray).

A third definition can be obtained by Fourier calculus: g 2 Hs(R`) ⇢ L2(R`) i↵
there is a constant C > 0 so that

✓ˆ
R`

|ĝ(⇠)|2(1 + |⇠|2) s
2 d⇠

◆

1
2

 C
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where ĝ is the Fourier transform of g, and the smaller such constant is precisely the
Hs(R`) norm of g. This definition allows to consider any s 2 R+ (another way to
define Hs for non-integer s would be to use the interpolation theory, see the mid-term
presentations).

Exercise 24. Check that all the three previous definitions are equivalent for Hs(R`)
and provide a Hilbert space, which is dense in L2(R`) (hint: use the approximation of
the unit for the last point).

Remark 1.4. For g 2 W 1,p(R`) with s � 1, we define thus a generalised deriv-

ative rg 2 Lp(R`) as the limit in Lp(R`) of rgn where gn 2 C1
c (R`) approximates g

in W 1,p(R`). In general this generalised derivative is not related to g by the standard
di↵erential calculus, that is in a pointwise. However it satisfies the integration by parts
as follows:

8' 2 C1
c (R`),

ˆ
R`

rg' dx = �
ˆ
R`

gr' dx.

We can also give a variant of the previous definition when only the highest-order
derivatives are considered in the norm:

Definition 1.5. We can now define the Sobolev homogeneous norm Ḣs(R`) for
s 2 N as the subspace of L2(R`) obtained by closing C1

c (R`) within L2(R`) for the
semi-norm

kgkḢs(R`) :=

0

@

X

|↵|=s

k@↵
x gk2L2(R`)

1

A

1
2

or equivalently

8' 2 C1
c (R`), 8 |↵| = s,

�

�

�

�

ˆ
R`

g(x)@↵
x'(x) dx

�

�

�

�

 kgkḢs(R`)k'kL2(R`)

or equivalently

kgkḢs(R`) :=

✓ˆ
R`

|ĝ(⇠)|2|⇠|s d⇠
◆

1
2

.

Exercise 25. In general this formula provides only a semi-norm, however since
we restrict to functions in L2(R`), prove that it is a norm due to the integrability
restriction.

1.2. Sobolev inequalities. This fundamental tool relates the smoothness mea-
sured by integrals in the Sobolev spacesHs to the usual Ck spaces where the smoothness
is measured in pointwise form:

8 s 6= (`/2)N, s 2 N, s > `/2, 9C > 0, kukCs�`/2(R`)  CkukHs(R`).

Let us go through the proof of this landmark result in analysis. We start with
dimension ` = 1 where the proof is quite simple:

Proposition 1.6. We have H1(R) ⇢ C1/2(R) and there is C > 0 so that

8u 2 H1(R), kukC1/2(R)  CkukH1(R).
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Proof of Proposition 1.6. Consider u 2 C1
c (R) during the proof and finally

argue by density. We have (u|u|)0 = 2|u|u0 and thus

|u|(x)u(x) = 2

ˆ x

�1
|u|(y)u0(y) dy

=) u(x)2 . kukL2(R)
�

�u0
�

�

L2(R)

=) kukL1(R) .
⇣

kuk2L2(R) +
�

�u0
�

�

2
L2(R)

⌘1/2
= kukH1(R).

Moreover we can estimate variations as

u(x)� u(y) =

ˆ y

x
u0(z) dz

=) |u(x)� u(y)| . |x� y|1/2
�

�u0
�

�

L2(R)

=) sup
x 6=y

|u(x)� u(y)|
|x� y|1/2 . kukH1(R)

which concludes the proof. ⇤
In general dimension we shall prove the slightly weaker following result, which is

su�cient for our study of ellipticity later.

Proposition 1.7. For k, s 2 N, s > k+ `/2, we have Ck(R`) ⇢ Hs(R`), and there
is a constant C > 0 so that

8u 2 Hs(R`), kukCk(R`)  CkukHs(R`).

Observe that the case ` = 1 is proved by the previous proposition. In higher
dimension, the proof is longer and will go through the so-called Sobolev-Gagliardo-
Nirenberg inequality.

Proposition 1.8. Assume ` > p. We have W 1,p(R`) ⇢ Lp⇤(R) with p⇤ := p`/(`�p)
and there is C > 0 so that

8u 2 W 1,p(R`), kukLp⇤ (R`)  CkukW 1,p(R`).

Remark 1.9. Observe that it implies a control of all Lq norms for q 2 [p, p⇤] by
Hölder inequality.

Proof of Proposition 1.8. We prove an intermediate result, the Sobolev-Gagliardo-
Nirenberg inequality, that will allow us to use the one-dimensional argument in an
“average way” on all variables:

Lemma 1.10. Let ` � 2 and f1, . . . , f` 2 L`�1(R`�1). For any 1  i  ` we
denote x̃i = (x1, . . . , xi�1, xi, . . . , x`) (removing the i-th component), and f(x) :=
f1(x̃1) · · · f`(x̃`). Then f 2 L1(R`) with

kfkL1(R`) 
Ỳ

i=1

kfikL`�1(R`�1).
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Proof of Lemma 1.10. The case ` = 2 is clear: f(x) = f1(x2)f2(x1) andˆ
x1,x2

|f | =
✓ˆ

x2

|f1|
◆✓ˆ

x1

|f2|
◆

.

The case ` = 3 is obtained by applying three times the Cauchy-Schwarz inequality:
The general case is obtained by induction. Suppose the case ` � 2 is true. Then

write f = f`+1(x̃`+1)F (x), F (x) = f1(x̃1) · · · f`(x̃`) andˆ
x1,...x`

|f(·, x`+1)|  kf`+1kL`(R`)kF (·, x`+1)kL`/(`�1(R`).

We then apply the case ` to f `/(`�1)
1 (·, x`+1) · · · f `/(`�1)

` (·, x`+1) with x`+1 fixed:

ˆ
x1,...x`

|f(·, x`+1)|  kf`+1kL`(R`)

 

Ỳ

i=1

�

�

�

f `/(`�1)
i (·, x`+1)

�

�

�

L`�1(R`�1)

!(`�1)/`

= kf`+1kL`(R`)

 

Ỳ

i=1

kfi(·, x`+1)kL`(R`�1)

!

.

We finally integate in x`+1 to get

kfkL1(R`+1)  kf`+1kL`(R`)

ˆ
x`+1

 

Ỳ

i=1

kfi(·, x`+1)kL`(R`�1)

!

dx`+1

 kf`+1kL`(R`)

Ỳ

i=1

 ˆ
x`+1

kfi(·, x`+1)k`L`(R`�1) dx`+1

!1/`

 kf`+1kL`(R`)

Ỳ

i=1

kfikL`(R`)

which proves the case `+ 1 and concludes the proof. ⇤

We now go back to the proof of the proposition with the lemma at hand. We define
v := |u|t�1u with @v = t|u|t�1@u, for any partial derivative @. We compute on v for
any 1  i  `:

|v(x)| 
�

�

�

�

ˆ xi

�1
@v

@xi
(x1, . . . , xi�1, t, xi+1, . . . , x`) dt

�

�

�

�


ˆ +1

�1

�

�

�

�

@v

@xi
(x1, . . . , xi�1, t, xi+1, . . . , x`)

�

�

�

�

dt =: fi(x̃i).

We deduce that |v|`/(`�1) 
Q`

i=1 f
1/(`�1)
i and by using the lemma:

kvkL`/(`�1)(R`) 
 

Ỳ

i=1

kfik1/(`�1)
L1(R`�1)

!

`�1
`


Ỳ

i=1

�

�

�

�

@v

@xi

�

�

�

�

1
`

L1(R`)
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which implies

kuktLt`/(`�1)(R`) . t
Ỳ

i=1

�

�

�

�

|u|t�1 @u

@xi

�

�

�

�

1/`

L1(R`)

.
Ỳ

i=1

 

kukt�1
Lp0(t�1)(R`)

�

�

�

�

@u

@xi

�

�

�

�

Lp(R`)

!1/`

kuktLt`/(`�1)(R`) . kukt�1
Lp0(t�1)(R`)

krukLp(R`)

where p0 := p/(p � 1). We then choose (in a unique way) t so that the Lebesgue
coe�cients match: t`/(`� 1) = p0(t� 1) = p⇤, which gives the result of the statement.

⇤
Proposition 1.11. Assume ` = p. We have W 1,p(R`) ⇢ Lq(R) for any q 2 [p,+1)

and for any such q there is Cq > 0 so that

8u 2 W 1,p(R`), kukLq(R`)  CqkukW 1,p(R`).

Proof of Proposition 1.11. We define v := |u|t�1u with @v = t|u|t�1@u for
any partial derivative @. We perform the same calculation as above based on the
Sobolev-Gagliardo-Nirenberg lemma to get:

kuktLt`/(`�1)(R`)  tkukt�1
L(t�1)`/(`�1)(R`)

krukL`(R`)

=) kukLt`/(`�1)(R`) . kukL(t�1)`/(`�1)(R`) + krukL`(R`).

By interpolation it implies for any t � `:

kukLt`/(`�1)(R`) . kukL`(R`) + krukL`(R`)

which concludes the proof. ⇤
Proposition 1.12. Assume ` < p. We have W 1,p(R`) ⇢ C1�`/p(R) and there is

C > 0 so that
8u 2 W 1,p(R`), kukC1�`/p(R`)  CkukW 1,p(R`).

Proof of Proposition 1.12. We first prove the Hölder regularity. Consider an
open cube with size r > 0 containing, say, 0. Call ū the average of u on that cube.
Then

|ū� u(0)|  1

|Q|

ˆ
Q
|u(x)� u(0)| dx

 r

|Q|

ˆ
Q

ˆ 1

0

X̀

i=1

�

�

�

�

@u

@xi
(tx)

�

�

�

�

dt dx

 r

|Q|

ˆ 1

0
t�`

 ˆ
tQ

X̀

i=1

�

�

�

�

@u

@xi
(y)

�

�

�

�

dy

!

dt

 r

|Q|

ˆ 1

0
t�`

 

X̀

i=1

�

�

�

�

@u

@xi
(y)

�

�

�

�

Lp(Q)

|tQ|1/p0
!

dt
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. krukLp(Q)r
1�`+`/p0

ˆ 1

0
t�`+`/p0 dt = krukLp(Q)r

1�`/p

ˆ 1

0
t�`/p dt

. r1�`/p

1� `/p
krukLp(Q).

Since the point zero was arbitrary we have

8x 2 Q, |ū� u(x)| . r1�`/p

1� `/p
krukLp(Q).

This proves the Hölder regularity with index 1� `/p by triangular inequality. Finally
the L1 control is obtained as follows: any point x 2 R` belongs to a cube Q as above
and then

|u(x)| . |ū|+ r1�`/p

1� `/p
krukLp(Q) . kukLp(Q) + krukLp(Q).

⇤
Proof of Proposition 1.7. We apply successively the previous propositions (see

example classes for more discussion on the technical aspects). Observe that as long
as p < ` we continue applying the first proposition, which results into the loss of
one derivative and the Lebesgue exponent p increasing by the transformation '(p) =
p`/(`�p) > p. This transformation maps [`/(k+1), `/k) to [`/k, `/(k�1)) for k � 2 and
[`/2, `) to [`,+1). Therefore starting from p = 2, the number of necessary iteration to
reach C0 is s so that 2 > `/s (in the borderline case one must use the second proposition
once). Finally we conclude by applying the third proposition once p > `. ⇤

1.3. Sobolev spaces on an open set.

Definition 1.13. We consider U a bounded and open set of R` with smooth bound-
ary @U .

We define the Sobolev space W s,p(U) on U , for s 2 N and p 2 [1+1], as a subset of
Lp(U) by building the completion of the vector space C1(R`) (infinitely di↵erentiable)
endowed with the norm

kgkW s,p(U) :=

0

@

X

|↵|s

k@↵
x gk2Lp(U)

1

A

1
2

.

It means:

W s,p(U) = C1(U)k·kWs,p(R`) ⇢ Lp(U).
We write Hs(U) = W s,2(U) in the case p = 2.

We also define the Sobolev space W s,p
0 (U) on U , for s 2 N and p 2 [1 + 1], as a

subset of Lp(U) by building the completion of the vector space C1
c (R`) (infinitely dif-

ferentiable with compact support included in U) endowed with the same norm W s,p(U).
It means:

W s,p
0 (U) = C1

c (U)k·kWs,p(R`) ⇢ Lp(U).

We write Hs
0(U) = W s,2

0 (U) in the case p = 2.
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Exercise 26. (1) Show that H1
0 (U) is a Hilbert space, included in H1(U).

(2) Show that on this subspace the homogeneous semi-norm Ḣ1 is a norm thanks
to the Poincaré inequality (see later in Subsection 1.4).

(3) Show also that for any u, v 2 H1
0 (U) and any first-order partial derivative @

we have ˆ
U
(@u)v dx = �

ˆ
U
u(@v) dx.

(Actually check that it is enough that only one of the two functions u and v is
in H1

0 (U), while the other one can be merely in H1(U).)
Hint: Use an approximation argument by C1

c (U) functions.

The Sobolev inequalities extend to the case of a smooth bounded domain (see the
example classes for a proof):

8 s 6= (`/2)N, s 2 N, s > `/2, 9C > 0, kukCs�`/2(U)  CkukHs(U).

Important warning. In the Borel-Lebesgue integration theory, functions in L2 are
only defined up to redefinition on a set of measure 0. Thus, the restriction of an
L2 function to a point or any hypersurface with non-zero codimension is meaningless.
When we now consider solutions in spaces of generalised functions, this is an important
thing not to be forgotten: the space should have enough regularity for the boundary
(and/or initial) conditions to make sense.

On the one hand, we have seen with the Sobolev inequalities that the Hs regularity
implies the Cs�`/2�0 regularity. Obviously our boundary conditions make sense for
continuous functions, therefore the regularity Hs with s > `/2 would clearly guarantee
that these boundary conditions make sense. However in dimension ` � 2 this seems to
prevent using H1. . .

On the other hand, another family of inequality, the so-called trace inequalities,
allows one to restrict Hs functions to Hs�1/2 functions on a smooth codimension-1
hypersurface. We can thus characterize H1

0 (U) as the subset of H1(U) consisting of
functions such that, extending to an H1(R`), which is always possible, the trace on
@U vanishes as an L2 function. More generally trace inequalities allow one to restrict
Hs functions to Hs�d/2 functions on a codimension-d hypersurface. When d = ` we
recover the numerology of Sobolev inequalities below: being continuous is similar to
the fact that restriction to points (full codimension subset) is well-defined.

1.4. Poincaré inequality.

Theorem 1.14 (Poincaré’s inequality with Dirichlet conditions). Let U ⇢ R` be a
open bounded set such that @U is smooth. Then there exists CU > 0 (only depending
on U) such that the following holds. Let u 2 C1(U) such that u = 0 on @U , then

✓ˆ
U
u(x)2 dx

◆1/2

 CU
✓ˆ

U
|ru(x)|2 dx

◆1/2

.

Proof of Theorem 1.14. Consider any point x = (x1, . . . , x`) in U , and let x̄1
be such that x̄ = (x̄1, x2, . . . , x`) 2 @U (see Figure 1.4).
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Figure 1.1. Illustration of the proof.

Then we have

u(x) =

ˆ x1

x̄1

@x1u(y, x2, . . . , x`) dy

and we estimate
ˆ
U
u(x)2 dx =

ˆ
U

✓ˆ x1

x̄1

@x1u(y, x2, . . . , x`) dy

◆2

dx

 D1(U)2
ˆ
U
|@x1u(x)|2 dx  D1(U)2

ˆ
U
|ru(x)|2 dx

which concludes the proof. We have denoted here by D1(U) the length of the greatest
interval along the first axis included in U . ⇤

Exercise 27. Show that this inequality remains true under the more general con-
dition that U is bounded along one of its direction only.

Remark 1.15. Note that there are also Poincaré’s inequalities in the whole space,
provided the reference measure � has some strong decay (essentially at least exponential)
and regularity properties. The most famous example is the gaussian case �(x) = e�|x|2:

 ˆ
R`

�

�

�

�

u(x)�
ˆ
R`

u(y)�(y) dy

�

�

�

�

2

�(x) dx

!1/2

 C�

✓ˆ
R`

|ru(x)|2 �(x) dx
◆1/2

.

The proof is more involved than the one above, see for instance the 2011 exam paper
of the course on kinetic theory for intermediate steps.

2. What is ellipticity?
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2.1. The notion of ellipticity. We say that a linear di↵erential operator P of
order k defined on an open set U is elliptic at x 2 U if �d(x, ⇠) 6= 0 for all ⇠ 2 R` \ {0}.
We say that it is elliptic on U if it is elliptic for all x in U . Equivalently, a linear
di↵erential operator P is elliptic if all hypersurfaces are non-characteristic.

Example 2.1. For a first order operator written as

P =
X̀

i=1

bi(x)@i + b0(x)

the definition of ellipticity can never be satisfied as soon as ` � 2 since �p(x, ⇠) cancels
on b(x)? with b(x) = (b1(x), . . . , b`(x)). But ` � 2 is required for a PDE, unless we
consider an ODE.

Example 2.2. Consider now a second order linear operator written as

P = �
X̀

i,j=1

aij(x)@
2
ij + lower order terms. . .

A first remark is that since @2
ij = @2

ji for C2 functions we can assume w.l.o.g. that the
matrix A := (aij)ij is symmetric (replacing it by āij = (aij+aji)/2 if necessary). Then
the ellipticity means that

8 ⇠ 2 R`,
X̀

i,j=1

aij(x)⇠i⇠j = ⇠TA(x)⇠ 6= 0

Hence by continuity and connectedness the sign is constant on R` \ {0}, and by con-
vention (changing A to �A if necessary), we are thus reduced to the case where A(x)
is a positive definite matrix, i.e. all its eigenvalues are positive. The (opposite of the)
Laplacian operator �� is thus the most simple example of elliptic operator.

The most characteristic feature of ellipticity is so-called elliptic regularity. Let us
first do some heuristics. The motivation for this can be found precisely in the above
properties of the symbol. In the case of a constant coe�cient di↵erential operator of
the form

P =
X

|↵|=k

a↵@
↵
x ,

if �P (x, ⇠) = �P (⇠) = 0, then for all � 2 R we deduce that

u�(x) = ei�x·⇠

is a solution to Pu�(x) = 0. In particular, as � ! 1, one can construct more and
more oscillatory solutions. In the general, non constant-coe�cient case, if �p(x0, ⇠) = 0
at some point x0, then u�(x) for large � can still be viewed as an approximate highly
oscillatory solution near x0. Thus, operators P which fail to be elliptic have highly
oscillatory solutions (or approximate solutions) of Pu = 0, and this intuition can
be “localised” in a region. It turns out that conversely, the condition of ellipticity
“prohibits” highly oscillatory behaviour for solutions of Pu = f if oscillation are not
present on the right hand side. This is at the heart of elliptic regularity.
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2.2. Elliptic regularity in the whole Euclidean space. One can distinguish
between qualitative and quantitative versions of the elliptic regularity principle. A
qualitative version is the statement that if f is C1 in a neighborhood of a point x 2 U
in an open set U , and u satisfies Pu = f , then u is C1 in a neighbourhood of x as well.
Already, we should have been a bit careful when we said “u satisfies”. What kind of
function are we assuming u to be a priori? To keep this discussion elementary, let us say
that u is a classical solution, that is to say, it has at least the order of di↵erentiability
appearing in the equation, i.e. it is C2, and let us first consider U = R`. To summarise:

Proposition 2.3 (Qualitative statement of elliptic regularity). Let u : R` ! R be
C2 with �u = f , where f is C1 on R`. Then u is C1 on R`.

The proof of this proposition makes use of new notions, which are di↵erent from
the previous chapters, and which can be organised along the following method:

(1) The use of Sobolev spaces to measure regularity by means of integral controls,
and Sobolev inequalities in order to recover Ck regularity.

(2) The proof of a (fundamental) a priori estimate, taking advantage of the posi-
tivity of the principal in order to show that a given number of derivatives on
f controls a higher number of derivatives on u.

(3) The justification of the a priori estimate by a regularization argument (painful
technically but necessary to the rigor of the proof).

Step 1 was discussed in the previous section, let us go through steps 2 and 3.

2.2.1. The key a priori esimate. The estimate is at the core the elliptic regularity
principle. Assume that �u = f is satisfied in R`, and that u, f 2 C1

c (R`). This means
that we argue a priori by assuming all the necessary regularity and decay at infinity,
i.e. decay in both real and Fourier variables.

We now claim that

(2.1) 8 s 2 N, kukḢs+2(R`) = kfkḢs(R`).

The proof is elementary but fundamental; it is a simple example of “energy method”.
We square and integrate the equation:ˆ

R`

|f |2 dx =

ˆ
R`

(�u)2 dx

and we perform integration by parts on the RHS:
ˆ
R`

(�u)2 dx =def

ˆ
R`

X̀

i,j=1

@2
iiu@

2
jju dx =IBP

ˆ
R`

X̀

i,j=1

@2
iju@

2
iju dx = kukḢ2(R`)

which proves the claim for s = 0. Now for a general s 2 N observe that if we di↵erentiate
the equation by @↵

x for some |↵|  s we have

�(@↵
xu) = @↵

x f

which means that the function @↵
xu satisfies the same elliptic equation as u. We are

using a fundamental fact here:

[�, @↵
x ] := �@↵

x � @↵
x� = 0
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i.e. the commutation between the operator defining the equation and the operator
according to which we want to estimate the regularity. We hence readily deduce by
performing the same energy estimate as before on @↵u that

k@↵
xukḢ2(R`) = k@↵

x fkL2(R`)

and we conclude the proof of the claim for s 2 N by summing over all |↵| = s.

2.2.2. Justification. As a third and last step, we can now complete the proof of the
elliptic regularity by justifying and making rigorous the latter a priori estimate. In
deriving (2.1), we have used underlying di↵erentiability assumptions, i.e. a qualitative
fact. But in fact, these assumptions can be proven from the “quantitative” statement
that appears to rely on it. In other words, we shall see a first instance of the important
fact that as soon as objects exists in one side of an a priori identity, they will exist in
the other side. Roughly speaking, an a priori control of a quantity by a finite estimate
will imply that the quantity indeed exists, i.e. “existence follows from the estimate”.

Let us illustrate this idea. For instance, suppose we know only a priori that u is a
classical solution, i.e. C2, whereas f is assumed to be C1. Consider an approximation
of the unit, i.e. consider � 2 C1

c (R`), 0  �  1 with compact support in B(0, 1) and
so that � = 1 on B(0, 1/4) and

´
� = 1, and then scale it as �✏(x) := ✏�`�(✏�1x) for

✏ > 0 (meant to be small), and as �R = �(Rx), R > 0 (meant to be large). Then define

(localisation) ũ := u�R, f̃ := �ũ

and
(regularisation) u✏ := ũ ? �✏, f✏ = f̃ ? �✏

where ? denotes convolution, which satisfy

8 ✏ > 0, �u✏ = f✏.

Observe that

f̃ = u(��R) + (�u)�R + 2ru ·r�R = u(��R) + f�R + 2ru ·r�R

is Hs�1 (with compact support) as soon as u 2 Hs in B(0, R+ 1).
Observe that u✏ has support in B(0, R+✏) and is C1 thanks to the convolution, and

f✏ 2 C1
c clearly as well. Observe also that ũ 2 L2(R`) thanks to the compact support

and the L1. We now apply the previous a priori estimate for s 2 N on di↵erences of
two mollified solutions:

ku✏1 � u✏2kḢs+2(R`)  kf✏1 � f✏2kḢs(R`).

By induction assume that ũ 2 Hs+1, then f̃ 2 Hs. Then let us prove that the RHS
is converging to zero. It is enough to prove

lim
✏!0

�

�

�

f✏ � f̃
�

�

�

Ḣs(R`)
= 0

and by taking @↵
x , |↵| = s, it is enough to prove

lim
✏!0

kg✏ � gkL2(R`) = 0

for a general g 2 L2(R`). We then write
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g✏(x) � g(x) =

ˆ
R`

g(x � y)�✏(y) dy � g(x) =

ˆ
R`

(g(x� y)� g(x))�✏(y) dy

where we have used
´
�✏ = 1. We then take the L2 norm:

kg✏ � gkL2(R`) . sup
|y|✏

kg(·� y)� gkL2(R`)

✓ˆ
R`

�✏(y) dy

◆

= sup
|y|✏

kg(·� y)� gkL2(R`)

and we finally use the fundamental fact of the theory of Lebesgue integration (on which
all mollification arguments rely on), which is the continuity of the translation operator
in all Lp spaces, p 2 [1,+1):

sup
|y|r✏

kg(·� y)� gkL2(R`)
✏!0��! 0,

which concludes the proof.
We now go back to our original problem. As a consequence of the fact that the RHS

goes to zero, we deduce that the sequence u✏ has the Cauchy property in Ḣs+2(R`),
and since ũ 2 L2(R`), it is also converging in L2(R`) and we deduce that it has the
Cauchy property in Hs+2(R`). Since we already know that u✏ ! ũ in L2(R`), the
uniqueness of the limit almost everywhere shows that ũ 2 Hs+2. We deduce therefore
that if u 2 Hs in B(0, R + 1) then u�R 2 Hs+1. Since this is true for any R > 0 we
deduce that by induction on s that ũ 2 \s�0Hs on any ball B(0, R), and finally by
Sobolev inequalities, we get that u 2 C1 on any ball, and thus u 2 C1(R`).

Remark 2.4. As one can see, the full argument of justification of the a priori
estimate is (1) long (and in particular significantly longer than the proof of the a priori
estimate itself !), (2) technically tedious. It is rarely performed in full details in research
papers and often postponed when working “heuristically” or “intuitively” on a problem,
however it is important to perfectly understand and check these justification arguments,
in order to provide fully rigorous proofs.

2.3. Localisation of energy estimates and elliptic regularity in open sets.
We shall now present a very simple by useful refinement of the previous argument: the
localisation of the a priori estimate in order to obtain the regularity in any neighbour-
hood.

Proposition 2.5 (Qualitative local statement of elliptic regularity). Let U ⇢ R`

be a bounded smooth open set, and u : U ! R be C2 with �u = f in U , where f is C1
on U . Then u is C1 on U .

Remark 2.6. This statement stresses the fact, in fact already present in the pre-
vious proof, that the elliptic regularity is a local phenomenon, in the sense that it is a
consequence of the PDE in any neighborhood, independently of what happens outside of
this neighborhood.

Proof of Proposition 2.5. Consider a base point x0 2 U and ⌘ so thatB(x0, 4⌘) ⇢
U . Then define

ũ(x) = u(x)�⌘(x� x0)

and
f̃ = �ũ, u✏ = ũ ? �✏, ✏ 2 (0, ⌘), f✏ = f̃ ? �✏, ✏ 2 (0, ⌘).
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We have that f̃ satisfies the equation

f̃(x) = �(u(x)�⌘(x� x0))

= �u(x)�⌘(x� x0) + u(x)��⌘(x� x0) + 2ru(x) ·r�⌘(x� x0)

and therefore f̃ = f on B(x0, ⌘/4) since � = 1 on B(0, 1/4). Observe that if u 2 Hs

in B(x0, 4⌘) then f̃ 2 Hs+1. Moreover f̃ and ũ have support in B(x0, ⌘) ⇢ U . Then
we can perform the same argument as above and show that ũ 2 Hs+1. Since the point
x0 was arbitrary, and ⌘ can vary (with the inclusion condition), we can induct on s to
prove that u 2 C1(U). ⇤

2.4. Ill-posedness of the Cauchy problem. Let us consider the issue of solving
the Cauchy problem for the Poisson equation, with the Cauchy surface � = {x1 = 0},
i.e. taking the first variable as time. The Cauchy problem then writes

(2.2)

8

>

>

<

>

>

:

�u = f, x = (x1, . . . , x`) 2 R`

u(0, x2, . . . , x`) = u0(x2, . . . , x`),

@x1u(0, x2, . . . , x`) = u1(x2, . . . , x`)

where u0 and u1 are the boundary data. We know from the Cauchy-Kovalevskaya
Theorem that if the data u0 and u1 are analytic near the origin, there exists a unique
analytic solution u of the Cauchy problem (2.2) in a neighborhood of the origin. On
the other hand, if we replace the analyticity assumption on u0, u1, with the assumption
that u0 2 Ck, u1 2 Ck�1, but u0 62 Ck+1, then elliptic regularity implies that there
cannot exist a C2 solution u satisfying (2.2). More precisely:

Proposition 2.7. Assume that u1 2 Ck�1 and u0 is Ck but not Ck+1 in a neigh-
bourhood of 0, for some k � 2, and f is a smooth (C1) function in this neighbourhood.
Then for no neighbourhood of 0 does there exist a C2 solution u of (2.2).

Proof of Proposition 2.7. We apply the proposition 2.5: if u is a C2 solution
to (2.2) in a neighborhood U of the origin, then u 2 C1(U), which contradicts u0 62
Ck+1. ⇤

Remark 2.8. As we shall see, this behaviour is very di↵erent from that of the wave
equation. The above non-existence result can be thought of as a qualitative statement
of ill-posedness, that is to say, saying that there does not exist a solution of a suitable
Cauchy problem.

Remark 2.9. Taken alone, it could be (mis)interpreted as merely saying that one
should never consider non-analytic functions. In fact this is a hint that the problem
is overdetermined, we shall later in the chapter remove one of the boundary condition
and consider the Dirichlet problem.

It turns out that like the statement of elliptic regularity, this qualitative statement
can be related to a quantitative statement, namely that even if the solution exists, the
Ck
loc norm of the solution can grow as fast as wanted, and the same holds no matter

what other way one tries to measure regularity, for instance Sobolev spaces Hs, etc.
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Proposition 2.10. Given any constant B > 0 and any k � l � 0, there exists an
analytic solution u to (2.2) with f = 0 such that

ku(1, ·)kCl � B (ku(0, ·)kCk + k@x1u(0, ·)kCk)

and similarly when Ck, C l are replaced by Hk(BR), H l(BR) for some given ball B(0, R)
with any R > 0.

Proof of Proposition 2.10. The proof can be performed going back to the ex-
ample of Hadamard we already discussed (dropping all variables x3, . . . , x`):

@2
x1
u+ @2

x2
u = 0, u(0, x2) = 0, @x1u(0, x2) = a! sin(!x2)

for some parameter ! > 0, whose solution is explicitely given by

u(x1, x2) =
a!
!

sinh(!x1) cos(!x2).

Then if we choose a! = exp(�p
!) and ! ! 1, we see that the initial data at x1 = 0

goes to zero in any Ck or Hk norm, whereas the solution at x1 = 1 goes to infinity in
any C` or H` norm. ⇤

Exercise 28. Explain how to extend this statement with an analytic right hand
side f in the Poisson equation �u = f .

Corollary 2.11. As a consequence, if we define D the set of analytic (u0, u1)
for which u(1, ·) is defined, then for all k � l � 0, the map (u0, u1) 7! u(1, ·) is not
continuous from D \Ck to C l (or from D \Hk(BR) to H l(BR), for any given R > 0).

It was Hadamard who first really understood this and formulated the notion of
well-posedness, which states not only that one can solve the initial value problem in
suitable family of function classes, but also, that the relevant map be continuous. Note
that allowing k > l gives a little bit of room for well-posedness type statements. For
the wave equation, we shall see that in Sobolev spaces we have continuity with k = l,
whereas in Ck spaces we must indeed take k > l.

One should already view this as a small victory for mathematical analysis in illu-
minating a fundamental physical principle. This di↵erence between elliptic (parabolic
equations too will fit this as we shall see) and hyperbolic equations is a deep physical
fact with many implications to the notion of time, the admissibility of theories, etc.
On the other hand, it is completely swept under the rug when looking only at analytic
solutions.

3. Toolbox: Hilbert space analysis

3.1. Hilbert spaces. A (real or complexed) normed vector space H is a Hilbert
space if:

• The norm satisfies the parallelogram identity

8x, y 2 H,
kx+ yk2 + kx� yk2

2
= kxk2 + kyk2.
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Exercise 29. Show that this identity is equivalent to the existence of a
scalar product h·, ·i compatible with the norm. A vector space H having this
property but not being complete is sometimes called a pre-Hilbert space.

Hint: Use the so-called polarization identity which is for real Hilbert space

hx, yi = 1

4

⇣

kx+ yk2 � kx� yk2
⌘

and for complex Hilbert spaces

hx, yi = 1

4

⇣

kx+ yk2 � kx� yk2 + ikx+ iyk2 � ikx� iyk2
⌘

.

• The space should be complete when endowed with the distance given by the
norm.

• (This last property may or may not be included in the standard definition)
The space should be separable, i.e. there should be a countable subset S ⇢ H
which is dense in H.

Assuming these three properties, one can speak of the (complex or real) Hilbert space,
as all such spaces possess a Hilbertian base, i.e. a countable orthonormal family (en)n�0

so that Span{en, n � 0} is dense in H, and are therefore isomorphic to `2(R) (or `2(C)).

Exercise 30. Prove the last claim.

Exercise 31. Show with the following example how to construct a non-separable
Hilbert space: consider H the subset of L2

loc(R) functions (square-integrable on any
compact subset) with finite norm for the scalar product

hf, gi := lim
R!1

1

R

ˆ R

�R
f(x)g(x) dx.

Then H has a Hilbert space structure, but one can check that for any a 2 R, the function
Sa : x 7! sin(ax) belongs to H (with norm 1) and that

8 a, a0 2 R, hSa, Sa0i = �a=a0 .

This produces a non-countable orthonormal family.

3.2. The Riesz (Hilbert space) representation Theorem. 1

The following result generalises the intuition of Euclidean spaces:

Proposition 3.1 (Projection on a closed convex set). Consider (H, h·, ·i) a Hilbert
space, C ⇢ H a closed non-empty convex subset of H, and x 2 H. Then there exists a
unique PC(x) 2 C which realizes the following minimization problem

kPc(x)� xk = min
y2C

ky � xk.

Moreover the application PC : H ! C is 1-Lipschitz.

1Warning: there are two main theorems usually called “Riesz representation Theorem” that should
be not confused, the other one being that of representation of positive linear functionals on Cc(X) (X
locally compact Hausdor↵ – i.e. separated– space) by regular Borel measures.
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Figure 3.1. Geometric summary of the proof.

Proof of Proposition 3.1. Set x = 0 w.l.o.g. If 0 2 C then we are done. If not
we denote the minimum value by I, and we consider a minimizing sequence yn 2 C,
n 2 N, so that kynk ! I � 0.

The sequence is Cauchy:

kym � ynk2 = 2kymk2 + 2kynk2 � kym + ynk2 = 2kymk2 + 2kynk2 � 4

�

�

�

�

ym + yn
2

�

�

�

�

2

and since (ym + yn)/2 2 C by convexity, we have
�

�

�

�

ym + yn
2

�

�

�

�

2

� I2

and

0  kym � ynk2 = 2kymk2 + 2kynk2 � 4

�

�

�

�

ym + yn
2

�

�

�

�

2

 2kymk2 + 2kynk2 � 4I2
m,n!1�����! 0.

This show the existence of the limit yn ! y1 by using the completeness of the space.
By closedness of C then we have y1 2 C, which implies the existence of a minimizer
and also that I > 0 since 0 62 C.

Let us show that the minimizer is unique. The intuitive reason is that a scalar
product structure implies the strict convexity of the unit ball of the space, and therefore
there are no non-trivial segment at constant distance from the origin. Let us argue by
contradiction and suppose that there are two distinct minimizers y11 6= y21, y11, y21 2 C.

First proof: consider the mid-point y31 = (y11 + y21)/2 and write (by expanding)

I2 
�

�y31
�

�

2
=

I2

2
+

1

2

⌦

y11, y21
↵

=) I2 
⌦

y11, y21
↵

.
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This implies since I2 = ky11k2 = ky21k2 that
⌦

y11, y21 � y11
↵

� 0,
⌦

y11 � y21, y21
↵

� 0, =)
�

�y11 � y21
�

� = 0.

Second proof: We have for any t 2 [0, 1] that ty11 + (1� t)y21 2 C and therefore

I2 
�

�ty11 + (1� t)y21
�

�

2
=
�

�y21
�

�

2
+ 2thy21, y11 � y21i+ t2

�

�y11 � y21
�

�

2
.

Using that
�

�y21
�

�

2
= I2 we deduce that

8 t 2 [0, 1], 2thy21, y11 � y21i+ t2
�

�y11 � y21
�

�

2 � 0.

Taking t ! 0+ this imposes hy21, y11 � y21i � 0. But a symmetric argument would
yield hy11, y21 � y11i � 0. Summing both inequalities gives

0  hy21, y11 � y21i+ hy11, y21 � y11i = hy21 � y11, y11 � y21i = �
�

�y11 � y21
�

�

2

which shows uniqueness.
Complement: arguing similarly we can now prove the Lipschitz regularity. Consider

t 2 (0, 1), two points x1, x2 2 H and their projections PC(x1), PC(x2) 2 C, and we
write down the two inequalities

kPC(x2)� x2k2  ktPC(x1) + (1� t)PC(x2)� x2k2

= kPC(x2)� x2k2+t2 kPC(x2)� PC(x1)k2+2t hPC(x2)� x2, PC(x1)� PC(x2)i

kPC(x1)� x1k2  ktPC(x2) + (1� t)PC(x1)� x1k2

= kPC(x1)� x1k2+t2 kPC(x2)� PC(x1)k2+2t hPC(x1)� x1, PC(x2)� PC(x1)i
which use the fact that tPC(x1)+ (1� t)PC(x2) 2 C, tPC(x2)+ (1� t)PC(x1) 2 C. We
deduce

t2 kPC(x2)� PC(x1)k2 + 2t hPC(x2)� x2, PC(x1)� PC(x2)i � 0

t2 kPC(x2)� PC(x1)k2 + 2t hPC(x1)� x1, PC(x2)� PC(x1)i � 0

and by summing the two inequalities

2t2 kPC(x2)� PC(x1)k2 � 2t hPC(x2)� x2 + x1 � PC(x1), PC(x2)� PC(x1)i
which implies

kPC(x2)� PC(x1)k  1

1� t
kx2 � x1k

and we finally let t ! 0. ⇤
Let us now prove the Riesz representation theorem (in the case of a real Hilbert

space, the complex case being similar).

Theorem 3.2 (Riesz representation Theorem). Consider a Hilbert space (H, h·, ·i)
and a continuous linear form g : H ! R. Then there is a unique y 2 H such that

8x 2 H, g(x) = hx, yi.
Moreover the map g 2 H0 7! y 2 H is linear and continuous (in fact isometric)

|||g|||L(H,R) = kykH
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where the LHS in the last equation denotes the canonical operator norm

|||g|||L(H,R) := sup
kxkH=1

|g(x)|.

Proof of Theorem 6.2. If g = 0 then y = 0 is the only solution and we are
done. If g is non-zero, then the vector structure implies that g(H) = R, and there is
y 2 H so that g(y) = 1. Consider the non-empty set

Cg = {y 2 H, g(y) = 1} .

It is convex by linearity of g, and closed by continuity of g. We then define y⇤ = PC(0)
from the previous proposition, which satisfies

ky⇤k = min
y2Cg

kyk.

Since y⇤ 2 Cg we have y⇤ 6= 0. Let us prove that y⇤? Null(g). Consider x 2 Null(g)
and t 2 R, then g(y⇤ + tx) = 1 hence y⇤ + tx 2 Cg. Therefore

8 t 2 R, ky⇤ + txk2 � ky⇤k2

which implies

8 t 2 R, 2thy⇤, xi+ t2kxk2 � 0

and therefore hy⇤, xi = 0 by taking t ! 0� or t ! 0+.
Finally for any x 2 H we have the decomposition

8x 2 H, (x� g(x)y⇤) 2 Null(g) ⇢ (y⇤)?

and therefore g(x) = hx, y⇤i/ky⇤k2, which conclude the proof with y⇤⇤ := y⇤/ky⇤k2.
The identity on the norm follows from Cauchy-Schwarz’ inequality, and testing it with
x = y/kyk. ⇤

4. The Dirichlet problem for the Poisson equation

Since as we have just seen, the Cauchy problem is ill-posed, what is the “correct”
way of obtaining solutions to �u = f? It turns out that the “correct” problem to
study is the so-called Dirichlet problem, i.e. solving �u = f on a bounded smooth
open set U ⇢ R` with prescribed boundary values on the boundary @U . A hint that
this is correct is provided by the fact that we can estimate a priori all solutions of the
Dirichlet problem, as we shall see. Let us first consider the simplest case, when the
prescribed boundary values are assumed to vanish. Consider a priori some u which
satisfies

�u(x) = f(x) for any x = (x1, . . . , x`) 2 U ,
u 2 C2(U) \ C1(U) and u(x) = 0 on x 2 @U .
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Figure 4.1. The Dirichlet problem.

4.1. The key a priori estimate. Again we shall start by highlighting the key a
priori estimate that we can obtain on this problem, and then (shortly) justify rigorously
the proofs that can be drawn from it. As before we argue a priori, assuming that, as we
said, u 2 C2(U)\C1(U) and u = 0 on @U . However since we do not prescribe anything
on the first derivative2, we need to establish en estimate that does not depend boundary
integrals of the gradient on @U .

We multiply the equation by u and integrate to obtainˆ
U
(�u)u dx =

ˆ
U
uf dx.

Integrating by parts (in view of the boundary conditions3), we getˆ
U
|ru|2 dx = �

ˆ
U
uf dx  kukL2(U)kfkL2(U).

We now use Theorem 1.14 (Poincaré’s inequality): U ⇢ R` is open smooth bounded
set such hence there exists CU > 0 (only depending on U) such that for any u 2 C1(U)
such that u = 0 on @U

✓ˆ
U
u(x)2 dx

◆1/2

 CU
✓ˆ

U
|ru(x)|2 dx

◆1/2

.

We apply this inequality to deduce

kuk2L2(U)  C2
U

ˆ
U
|ru|2 dx  C2

UkukL2(U)kfkL2(U)

2We know from the previous section that it would be a bad idea to prescribe both u and its normal
gradient on some Cauchy surface, and the Dirichlet problem consists in removing the condition on the
gradient. However there is another important class of boundary conditions, the Neumann boundary
conditions, where some orthogonality condition is prescribed on the gradient at @U , but in this case
nothing is prescribed on the value of u.

3Note in particular why C1(U) is natural.
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which implies
kukL2(U)  C2

UkfkL2(U).

But now we can build up on this first estimate, and obtain more: by boostraping
the information on the L2 norm of u into the first a priori estimate we obtainˆ

U
|ru|2 dx  kukL2(U)kfkL2(U)  C2

Ukfk2L2(U).

Combining the two last inequalities we can write

kuk2H1(U) 
�

C4
U + C2

U
�

kfk2L2(U).

As a consequence of this discussion we can prove

Proposition 4.1. Suppose u, v 2 C2(U) \ C1(U) satisfy �u = �v = f on U with
u = v = g on @U . Then u = v.

Proof of Proposition 4.1. The proof follows from the previous estimate ap-
plied to the solution w = u� v which solves �w = 0 on U with w = 0 on @U :

kwk2H1(U)  2CUk0k2L2(U) = 0

from our previous estimate, which shows by continuity that w = 0 everywhere. ⇤
This last proposition solves the problem of uniqueness, but leaves open that of

existence and continuity according to the data, which are the object of the next sub-
sections.

4.2. Existence of weak (generalised) solutions. Weak formulations are an
important tool for the analysis of PDEs that permit the transfer of concepts of linear
algebra to solve the problems. In a weak formulation, an equation is no longer required
to hold in the classical sense (and this is not even well defined) and has instead weak
solutions only with respect to certain “test vectors” or “test functions”. This is equiva-
lent to formulating the problem to require a solution in the sense of a distribution. We
introduce a formulation for weak solutions for the Poisson equation and show how to
construct solutions using Riesz representation Theorem. (We will then explain how to
construct solutions to more general elliptic problems with the help of the Lax-Milgram
theorem.)

Let us first define the notion of weak solutions. Assume that �u = f with u 2
C2(U)\C1(U) and u = 0 on @U then for any v 2 C2(U)\C1(U) with v = 0 on @U we
have

hhu, vii :=
ˆ
U
ru ·rv dx = �

ˆ
U
(�u)v dx = �

ˆ
U
fv dx

where we have denoted by hh·, ·ii the scalar product associated with the homogeneous
norm Ḣ1(U), keeping the notation h·, ·i for the usual L2(U) scalar product. Observe
crucially that the objects in the LHS and RHS of this statement still make sense as
soon as u, v 2 H1

0 (U).

Definition 4.2. We call generalised (or weak) solution a function u 2 H1
0 (U) such

that
8 v 2 H1

0 (U), hhu, vii = �hf, vi.
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Note that we have an equivalent characterization that u 2 H1
0 (U) and

hu,�vi = hf, vi
for all v 2 C1

c (U) smooth of compact support in U . This latter equality is the statement
that u is a distributional solution of �u = f .

Exercise 32. Prove the equivalence in the definition.

Remark 4.3. Note the important idea behind this reformulation: the boundary
conditions have been enforced-encoded in the functional space itself.

We can now state and prove the existence theorem:

Theorem 4.4. Let U ⇢ R` and open set, and f 2 L2(U). Then there exists a
unique u 2 H1

0 (U) such that u is a weak solution of �u = f , in the sense defined above.

Proof of Theorem 4.4. The proof is a straightfoward application of the Riesz
representation Theorem: we consider the following linear form on H1

0 (U):
8 v 2 H1

0 (U), g(v) := �hf, vi
which is continuous by Cauchy-Schwarz and Poincaré’s inequalities

8 v 2 H1
0 (U), |g(v)| = |hf, vi|  kfkL2(U)kvkL2(U) . kfkL2(U)kvkḢ1(U).

Then the Riesz representation theorem applied in the Hilbert space H1
0 (U) endowed

with the norm Ḣ1(U), shows that there is a unique u 2 H1
0 (U) so that

8 v 2 H1
0 (R`), g(v) = hhu, vii

which concludes the proof. ⇤
Remark 4.5. Observe moreover that in the previous statement the solution map

S : f 7! u is continuous from L2(U) to H1
0 (U) since

kgkH1
0 (U)⇤ = sup

kvkḢ1(U)=1
|g(v)| . kfkL2(U)

and g 7! u is an isometry in the representation theorem.

Exercise 33. In fact prove that S is even continuous from H�1
0 (U), the dual of

H1
0 (U) for the L2(U) scalar product h·, ·i, to H1

0 (U):
kfkH�1

0 (U) := sup
kvk

H1
0(U)=1

hf, viL2(U).

5. Toolbox: compactness tools in PDEs

5.1. Weak vs strong compactness. Let us first give some recalls. We consider
a separable Hilbert space H.

Definition 5.1. The weak compactness of a sequence un 2 H in a Hilbert space
H means that there is a subsequence u'(n) so that

8 v 2 H, hu'(n), vi ! hu1, vi
for some u1 2 H.
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The strong compactness of a sequence un 2 H in a Hilbert space H means that
there is a subsequence u'(n) so that

�

�u'(n) � u1
�

�

H ! 0

for some u1 2 H.
The weak topology on H is the topology induced by continuous linear forms on H,

i.e. the dual H⇤, which turns out to be isometric to H by Riesz representation theorem.

Exercise 34. The unit ball of H is strongly compact i↵ H is finite dimensional.
Show that in this case the weak and strong topologies coincide.

Hint: If H is finite dimensional the implication is Bolzano-Weierstrass. Else ar-
gue by contradiction and construct a sequence with no cluster points (with distances
uniformly bounded from below between all pairs).

Exercise 35. Prove however that the unit ball is always weakly compact.
Hint: consider a Hilbertian base and perform a diagonal process.

Exercise 36. Show that the weak topology cannot be associated to any metric on
the whole space H. Show however that the unit ball of H, endowed with the weak
topology, can be endowed with a metric.

Hint for the first part: Show that an open set for the weak topology always contains
a whole line.

In a non-reflexive Banach space, the situation is more complicated, there are two
non-strong topologies: the weak and weak-* topologies, and the Banach-Alaoglu the-
orem gives compactness of the unit ball of H⇤ for weak-* topology. The most general
form relies upon Tychonov’s theorem and the axiom of choice.

Exercise 37. Show that the Banach-Alaoglu theorem for the dual of a separable
space can be proved without using the axiom of choice, thanks to a countable diagonal
argument.

Note that in PDEs we almost always have spaces with the separability property and
we thus almost never need the axiom of choice. The space of Schwartz’ distributions
may suggest the opposite, but any concrete problem lives in a subset of the set of
distributions with countable basis of neighborhoods (e.g. tempered distributions).

Exercise 38. What are the conditions for a sequence to be weakly-* compact in
Lp(R), p 2 (1,1)? in L1(R)?

Let us now turn to the question of strong compactness. Here the “root” of all
theorems is Arzelà-Ascoli’s Theorem:

Theorem 5.2 (Arzelà-Ascoli’s Theorem). A sequence fn of continuous real func-
tions on a compact Hausdor↵ space X is relatively compact in the topology induced by
the uniform norm if and only if it is (1) equicontinuous: for any " > 0 and x 2 X,
there is V neighborhood of x so that

8n � 1, 8 y 2 V, |fn(x)� fn(y)|  ",

and (2) pointwise bounded: for any x 2 X

sup
n�0

|fn(x)| < +1.
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Remark 5.3. Observe that the boundedness assumption is reminiscent of weak com-
pactness statements. However the equicontinuity is an assumption of uniform regularity
along the sequence that proscribes the possibility of infinite oscillatory behaviors as n
goes to infinity. As a general principle, the main obstacle to weak compactness is the
divergence, and the main obstacle to a weak compactness being strong is oscillations
(i.e. divergence in Fourier variable) which can be ruled out by uniform regularity as-
sumption. The Arzelà-Ascoli Theorem is in fact the origin of most strong compactness
theorems in analysis.

Proof of Theorem 5.2. Construct a countable dense subset Y of X, then show
convergence of a subsequence of fn(x) for any x 2 Y , and find a subsequence conver-
gence for all points of Y by a diagonal argument. This defines a limit f on Y . The
equicontinuity implies then the continuity of this limit on Y . It then can extended
by density to a continuous function on X. The uniform convergence follows from the
equicontinuity and the pointwise convergence on Y . ⇤

Exercise 39. Give example of sequences converging weakly but not strongly. Show
that the weak limit of a product is not in general the product of the weak limits. Show
that weak convergence plus convergence of the norm implies strong convergence.

Exercise 40. Search in textbooks some su�cient conditions to strong compactness
of a set of functions of Lp(R), p 2 (1,+1)?

We shall conclude this subsection with the following fundamental compactness the-
orem:

Theorem 5.4 (Rellich-Kondrachov Compactness Theorem). Assume U ⇢ R` is a
bounded open set with @U smooth then

H1(U) ⇢⇢ L2(U)
which means that the canonical inclusion is compact.

Proof of Theorem 5.4. Let us only sketch the proof as it requires tools from
Sobolev inequalities. We admit here the extension process of functions of H1(U) to
H1(R`) with compact support.

In dimension ` = 1, we know from Morrey’s inequality (cf. mid-term assignements)
that H1(U) ⇢ C1/2�0(U). Then the classical Arzelà-Ascoli Theorem on the compact
set U concludes the proof, as the Hölder regularity implies the equicontinuity, and L1
bound implies the required boundedness.

In higher dimension ` � 2, the Sobolev inequalities show the inclusion and only
the compactness of the inclusion remains to be proved. Then one considers a sequence
un 2 H1(U) uniformly bounded, extends the function to R` with a common support
K. Next one shows that a uniformly bounded sequence in H1(R`) can be uniformly
approximated in L2(U) by the convolution with an approximation of the unit. Finally
apply Arzelà-Ascoli Theorem on K on each approximation to show its compactness in
L2(K), and use a standard diagonal argument. ⇤

5.2. Compact operators. We introduce an important class of operators that are
useful generalisation of finite ranked operators (matrices).
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Definition 5.5. We consider a bounded linear operator K : H ! H, where H is a
Hilbert space. This operator is said compact if it maps the unit ball into a relatively
compact set (for the strong topology).

Remark 5.6. Note that the boundedness is in fact implied by the second part of the
definition.

The key result we shall need, and at the starting point of the Fredholm theory, is:

Proposition 5.7. Given a compact operator K on a Hilbert space H, then Id + K
has closed range, finite dimensional kernel and finite dimensional cokernel (the cokernel
is the orthogonal complement of the range).

Proof. First, the null space of Id+K has a compact unit ball by the compactness
of K: any sequence gn with kgnk  1 and gn + Kgn = 0 satisfies that Kgn has a
converging subsequence by the compactness of K, which implies that gn has a converging
subsequence. This implies by Riesz theorem that Ker(Id + K) is finite dimensional.

Second, let us prove that (Id+K) is coercive on the orthogonal of its kernel: there is
�K > 0 so that kg + Kgk � �Kkgk for g 2 Ker(Id + K)?. It is proved by contradiction:
consider gn 2 Ker(Id + K)? a sequence so that kgnk = 1 and kgn + K(gn)k ! 0 as
n goes to infinity. Then using on the one hand the weak compactness of the unit
ball and on the other hand the compactness of the operator K, there is a subsequence
g'(n) so that g'(n) * g (weak convergence) and Kg'(n) is strongly converging. Since
the weak convergence of g'(n) implies Kg'(n) * Kg and the weak and strong limits
are the same, we deduce that Kg'(n) ! Kg = �g (strong convergence) and then
finally g'(n) ! g 2 Ker(Id + K) (strong convergence). But by weak limit we also have

g 2 Ker(Id + K)?, which implies that g = 0. Moreover the strong convergence implies
kgk = 1, which yields the desired contradiction.

Third let us prove that the range of Id + K is closed. Consider a sequence gn +
Kgn ! h. We can decompose gn = g1n + g2n 2 Ker(Id + K)? + Ker(Id + K). From the
previous point, we have that g1n is a bounded sequence, with g1n +Kg1n ! h. There is a
subsequence g'(n) so that Kg'(n) is converging (in the strong topology), which implies
that g'(n) is strongly converging as well, say to some g. Finally by continuity of K we
deduce g + Kg = h 2 Range(Id + K).

Fourth let us prove that the adjoint of a compact operator is also compact. Let us
recall that the adjoint operator K⇤ of K is defined by the formula

8 f, g 2 H, hKf, gi = hf,K⇤gi
and Riesz’ representation theorem. Consider a bounded sequence gn 2 H. Then K⇤gn
is bounded and there is a subsequence g'(n) so that g'(n) * g 2 H and K⇤g'(n) *
K⇤g 2 H. Then

�

�K⇤g'(n) � h
�

�

2
= hK2(g'(n) � g), g'(n) � gi.

Then by the compactness of K, we have K2(g'(n) � g) ! 0 (strong convergence), which
implies that

�

�K⇤g'(n) � h
�

�! 0 and concludes the proof of the fact that K⇤ is compact.
Then applying the points 1-2-3 above to (Id + K)⇤ = Id + K⇤, we deduce that the

cokernel is also finite dimensional, since we recall that

Range(Id + K)? = Ker(Id + K⇤), Range(Id + K⇤)? = Ker(Id + K).
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This concludes the proof. Observe also that H1
0 (U) is the direct sum of Ker(Id + K⇤)

and Range(Id + K) (the latter being closed). ⇤

Let us now study the dimensions of Ker(Id +K) and Coker(Id +K) and prove that
they are the same.

Proposition 5.8. Given a compact operator K on a Hilbert space H, then one has

dimKer(Id + K) = dimCoker(Id + K) < +1.

Proof. The proof relies on a continuation argument and the following more general
claim: if a bounded operator T has closed range, finite dimensional kernel and cokernel,
and satisfies dim(Ker(T)) = dim(Coker(T)), then all these properties are preserved
under small enough perturbation (for the norm of bounded operators).

The proof of this claim is a reduction to the finite dimensional case. We decompose
the space as C�Ker(T) and Range(T)�D with dim(Ker(T)) = dim(D). The operator
T writes

T =

✓

T̃ 0
0 0

◆

in this decomposition, and we consider a small perturbation P which writes

P =

✓

P11 P12

P21 P22

◆

in this decomposition. Then we define the two invertible operators

G =

✓

Id �(T̃+P11)�1P12

0 Id

◆

, H =

✓

Id 0
�P21(T̃+P11)�1 Id

◆

and we write

H(T+P)G =

✓

T̃+P11 0
0 �P21(T̃+P11)�1P12 +P22

◆

.

Let us denote A := �P21(T̃ +P11)�1P12 +P22 which goes from Ker(T) to D. Since
these two spaces have the same (finite) dimension we have from the rank nullity theorem

dim(Ker(A)) = dim(Coker(A)).

Since G, H are invertible, and, for P small enough, T̃ + P11 is invertible, we deduce
that

dim(Ker(T)) = dim(Ker(A)), dim(Coker(T)) = dim(Coker(A))

which concludes the proof of the claim.
Now going back to the operator Id + K we consider the path Id + tK, t 2 [0, 1] and

perform a continuation argument. The interval [0, t0), t0 > 0, for which the properties
above are satisfied is non-empty and open from the previous claim. But since Id + t0K
still has finite range and finite dimensional kernel and cokernel (as t0K is compact), the
same argument could be performed around t0 as well, which shows that t0 = 1, and
therefore concludes the proof. ⇤
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6. General elliptic equations and Lax-Milgram Theorem

Let us consider now the more general boundary-value problem

(6.1)

(

Pu = f in U
u = g on @U .

where U ⇢ R` is open, bounded and smooth, P denotes a second-order linear elliptic
partial operator, and g is smooth enough to be the trace of an H1(U) function.

6.1. Divergence and non-divergence forms. The operator P can be given in
two di↵erent forms. The first one is

(6.2) Pu := �
X̀

i,j=1

@j (aij(x)@iu) +
X̀

i=1

bi(x)@iu+ c(x)u

and is called the divergence form, as the leading-order part of the operator writes r ·U
for some U(x) 2 R`.

The second formulation is

(6.3) Pu = �
X̀

i,j=1

aij(x)@
2
iju+

X̀

i=1

bi(x)@iu+ c(x)u

and is called the non-divergence form for obvious reasons.

Remark 6.1. Note the minus sign in front of the second-order term, which is
convenient for reminding that the ellipticity is related to coercivity (positivity) of the
Fourier symbol.

Exercise 41. Assume that the coe�cients aij, bi, c are C1 and show that an
operator given in divergence form can be rewritten in non-divergence form, and vice-
versa.

Both forms are useful. The divergence form is usually better adapted to energy
estimates which uses integration by parts, Hilbertian methods, and more generally
integral arguments. The non-divergence form is better adapted to pointwise arguments
and maximum principles.

6.2. Ellipticity and reduction of the problem. We consider in the rest of this
section the operator P as above in divergence form and we assume (1) w.l.o.g. the
symmetry condition

8 i, j 2 {1, . . . , `}, aij = aij
and (2) the uniform ellipticity condition

8x 2 U , A(x) � ↵ > 0, A(x) = (aij)1i,j` .

We also assume that the coe�cients satisfy aij , bi, c 2 L1(U). Let us denote B(x) =
(b1(x), . . . , b`(x))?. We consider the equation Pu = f in U with some f 2 L2(U),
together with the boundary condition u = g on @U with some g 2 C0(@U).

Observe that we can reduce to the case of zero boundary conditions: consider
w 2 H1(R`) so that w restricts to g on @U . Then ũ = u � w solves a similar elliptic



6. GENERAL ELLIPTIC EQUATIONS AND LAX-MILGRAM THEOREM 77

PDE for the same matrix A(x) and some other RHS f̃ . We therefore assume that g = 0
in the sequel.

6.3. The key a priori estimate. Assuming that u 2 C2(U)\C1(Ū), we multiply
the equation by u and integrate it over U :ˆ

U
(ru)TA(x)(ru) dx+

ˆ
U
u(x)B(x) ·ru dx+

ˆ
U
cu2 dx =

ˆ
U
fu dx

and we deduce that

↵

ˆ
U
|ru|2 dx  kBk1kukL2(U)krukL2(U) + kck1kuk2L2(U) + kukL2(U)kfkL2(U)

 ↵

2
kruk2L2(U) + kfk2L2(U) + Ckuk2L2(U)

for some constant C > 0 (possibly large). We deduce that

kruk2L2(U) . kfk2L2(U) + kuk2L2(U).

(Recall that the sign . means that the inequality holds with a constant unimportant
for the argument and not depending on the quantities in the inequality). Hence we see
again a gain of regularity, however now the uniqueness does not follow immediately from
the a priori estimate. We shall first deal with the case where the coercivity is recovered
in the sense that one can establish the a priori estimate kruk2L2(U) . kfk2L2(U). This
first case will be solved with the help of Lax-Milgram Theorem. We will then consider
the general case thanks to the Fredholm theory.

6.4. The Lax-Milgram Theorem. Consider a linear form L and a bilinear form
(not necessarily symmetric!) B on H1

0 (U). Then we consider the problem of finding
u 2 H1

0 (U) so that

(6.4) 8 v 2 H1
0 (U), B(u, v) = L(v).

Theorem 6.2 (Lax-Milgram). Assume in (6.4) that L and B are bounded as linear
(resp. bilinear) forms on H1

0 (U). Assume moreover that B is coercive: there is � > 0
so that

8 v 2 H1
0 (U), B(v, v) � �kvkH1(U).

Then there exists a unique solution u 2 H1
0 (U) to (6.4). The solution map S : L 7! u

is moreover continuous from H�1
0 (U) to H1

0 (U).

Proof of Theorem 6.2. For any given u 2 H1
0 (U), the linear form v 2 H1

0 (U) 7!
B(u, v) 2 R is continuous, and therefore the Riesz representation theorem shows that
there is a (unique) u⇤ so that

8 v 2 H1
0 (U), B(u, v) = hhu⇤, vii.

Moreover since from the theorem the map u 7! u⇤ is linear and continuous we can
represent it as u⇤ = Tu for some bounded operator T on H1

0 (U). We also represent L
by l 2 H1

0 (U) by the same theorem

8 v 2 H1
0 (U), L(v) = hhl, vii
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and therefore the equation on u rewrites as

8 v 2 H1
0 (U), hhTu, vii = hhl, vii

which is equivalent to Tu = l 2 H1
0 (U). It remains to prove that T is invertible in

H1
0 (U) to conclude the proof (defining finally u = T�1l).
The operator T satisfies the following

8 v 2 H1
0 (U), kvk2H1(U)  �B(v, v)  �kTvkH1(U)kvkH1(U)

which implies kTvkH1(U) � ��1kvkH1(U) for any non-zero v 2 H1
0 (U). This proves

the injectivity. This also proves that the range of T is closed: if Tvn is converg-
ing it is Cauchy and therefore vn is Cauchy and converging to v1 since the space
is complete, and by continuity of T, Tvn ! Tv1. Finally if the range of T is not
H1

0 (U), because of its closedness there is a non-zero w?Range(T) which contradicts
hhTw,wii = B(w,w) > 0. ⇤

Remark 6.3. Note that if B is symmetric: B(u, v) = B(v, u), then a simpler
proof can be devised: defining a scalar product out of B one observes that it endows
H1

0 (U) with a norm equivalent to H1(U), for which Riesz representation theorem can
be immediately applied. Lax-Milgram theorem is really meaningful only in the non-
symmetric case.

6.5. Existence of weak solutions assuming global coercivity. We go back
to the problem and assume the operator P is so that the following stronger a priori
estimate yields

kukH1(U) . kukL2(U).

Exercise 42. Check that is always possible to satisfy this condition by taking the
coe�cients bi and c small enough in terms of the constant � so that A � �.

Then we want to apply Lax-Milgram theorem with
8

>

<

>

:

B(u, v) :=

ˆ
U
(ru)TA(x)(rv) dx+

ˆ
U
vB(x) ·ru dx+

ˆ
U
cuv dx,

Lv := hf, vi.

The definition of B corresponds to hPu, vi after integration by parts. The fact that B
is bounded in H1(U) is clear from aij 2 L1(U). The fact that L is bounded is clear
from f 2 L2(U) and Poincaré’s inquality (note here that in the definition of L we use
the standard L2(U) scalar product).

The coercivity assumption means in a more precise form that

8 v 2 H1
0 (U), B(v, v) � �kvk2H1(U)

for some constant � > 0. We can then apply the Lax-Milgram theorem and conclude
the proof.
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6.6. Existence of weak solutions without the global coercivity. We now
consider the same framework but only assume the (strict uniform) ellipticity

A(x) � �e > 0

on the second-order part of the operator P, but no more global coercivity on P. Let
us denote

Pe =
X̀

i,j=1

aij(x)@
2
ij

the second-order part of the operator P .
6.6.1. A first attempt. The previous study show that the equation

(

Peu = f in U
u = 0 on @U .

admits a unique solution u 2 H1
0 (U), which depends continuously on the linear form

v 7! hf, vi on H1
0 (U). The norm of this linear form is the H�1

0 (U) norm of f . We have
hence inverted the operator Pe (with the Dirichlet conditions) and shown that

�

�P�1
e f

�

�

H1
0 (U)

. kfkH�1
0 (U).

However the complete operator P does not have the necessary coercivity for invert-
ing it in a similar manner. A first idea could be to factorize P by Pe:

P = Pe

�

Id +P�1
e B ·r+P�1

e c
�

and use compactness properties of K := P�1
e B · r + P�1

e c. This would require more
regularity on the coe�cients and we shall follow a simpler and more optimal approach.

6.6.2. A simpler and more optimal approach. The operator P can be made coercive
by a zero-order simple modification, and we can then factorize by the modified operator.

Proposition 6.4. There is �0 > 0 so that P+ �0Id is coercive in the sense

8 v 2 H1
0 (U), h(P + �0Id)v, vi � �̃kvk2H1(U)

for some �̃ > 0.

Proof of Proposition 6.4. We perform the same a priori energy estimate

h(P+ �0Id)v, vi � �ekvk2Ḣ1(U) � hB ·rv, vi � hcv, vi+ �0kvk2L2(U)

� �ekvk2Ḣ1(U) � kBk1
�e

2kBk1
kvk2

Ḣ1(U) �
kBk1
2�e

kvk2L2(U)

� kck1kvk2L2(U) + �0kvk2L2(U)

� �e

2
kvk2

Ḣ1(U) +

✓

�0 �
kBk1
2�e

� kck1
◆

kvk2L2(U)

� �e

2
kvk2

Ḣ1(U) + �̄kvk2L2(U)

for some �̄ > 0, when choosing �0 large enough, which concludes the proof. ⇤
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Therefore from the previous subsection we can invert (P+�0Id) with the Dirichlet
conditions. We now write the following factorisation

P = (P+ �0Id)� �0Id = (P+ �0)
⇥

Id� �0(P+ �0Id)
�1
⇤

= (P+ �0) [Id� K]

where we denote K := ��0(P+ �0Id)�1.
We shall show later that the operator K maps L2(U) to H1

0 (U) and is a compact
operator in L2(U), i.e. it maps the closed unit ball inside a compact set. Let us assume
this for now and let us prove a criterion for the existence and uniqueness of solutions.

Observe that the equation is now equivalent to finding u 2 L2(U) so that

u+ Ku = F, F := (P+ �0Id)
�1f 2 H1

0 (U).
Indeed any such u 2 L2(U) will in fact be in H1

0 (U) since both Ku and F belong
to H1

0 (U). Let us analyse t From the results in the previous section, we now that the
operators of the form Id+K with K compact have finite dimensional kernel and co-kernel,
with equal dimension. It remains to prove the compactness of K = ��0(P + �0Id)�1

on L2(U).
We consider a sequence un 2 L2(U) with kunkL2(U)  1, n � 0. Let us denote

vn := Kun 2 H1
0 (U). Then we have

(P+ �0Id)vn = ��0un

and we can perform the following estimate, which takes advantage of the coercivity
estimate on (P+ �0Id):

kvnkH1
0 (U) . kunkL2(U).

It proves the compactness of the sequence vn by the Rellich-Kondrachov theorem in
the previous subsection.

By combining the previous results we obtain

Theorem 6.5 (Weak solutions to the general Dirichlet problem). We assume that
the second-order elliptic operator P has coe�cients aij, bi, c 2 L1(U) in divergence
form, and satisfies the uniform ellipticity condition on U . We consider the problem

(6.5)

(

Pu = f in U
u = 0 on @U .

where f 2 H�1
0 (R`).

Then there are two exclusive possible cases:

(I) either there is a unique weak solution u 2 H1
0 (U) to this elliptic problem

(dimKer(Id + K) = 0 above),
(II) or else there is at least one non-zero weak solution u 2 H1

0 (U) to the homoge-
neous problem (dimKer(Id + K) 6= 0 above)

(6.6)

(

Pu = 0 in U
u = 0 on @U .

Remark 6.6. As said before one could consider the more general Dirichlet condition
u = g on @U where g is the restriction of an H1(R`) function to @U .
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Remark 6.7. In the situation (II) the dimension of the subspace N of weak ho-
mogeneous solutions to (6.6) is the same as the dimension of the subspace N⇤ of weak
homogeneous solutions to the adjoint problem

(

P⇤u = 0 in U
u = 0 on @U .

Remark 6.8. In the situation (II), the necessary and su�cient condition for the
existence of a solution to the original problem (6.5) is

8 v 2 N⇤ 2 H1
0 (U), hf, vi = 0.

Remark 6.9. Observe finally that the reduction to the homogeneous problem is not
simply a consequence of linearity due to the boundary conditions.

7. Regularity study of elliptic equations

We now address the question as to whether a weak solution to Pu = f in U
is smooth. This is the regularity problem for weak solutions, which we had already
encountered for classical solutions in the whole space. We must distinguish between
interior regularity and boundary regularity. We shall start with a warm-up on the key
a priori estimate and some comments on the question of the approximation argument.

7.1. A priori estimate and approximation argument. Let us first consider
the Poisson equation, and note that our energy estimate holds for weak solutions. For,
choosing v = u in the definition of a weak solution, we have

kuk2
Ḣ1(U) = hhu, uii  kfkL2(U)kukL2(U) . kfkL2(U)kukḢ1(U)

where we have used the Poincaré inequality, and therefore by dividing by the Ḣ1(U) of
u we get

kuk2
Ḣ1(U) . kfk2L2(U).

But if we remember the previous a priori estimate we used in the regularity study, it is
reasonable to expect that, away from boundary, we would have the stronger estimate

kuk2
Ḣ2(V) . kfk2L2(U)

where V is an open set with V ⇢ U . This leaves open the question of what hap-
pens at the boundary. However we shall see that the control of tangential derivatives
combined with the di↵erential relation provided by the PDE and the fact that @U
is non-characteristic will allow to control the normal derivative. Then our previous
estimate indeed extends up to the boundary, and we have

kuk2
Ḣ2(U) . kfk2L2(U).

Finally it is not hard to convince oneself formally that one should expect the same a
priori estimate to hold at any order of regularity:

8 s 2 N, kuk2
Ḣs+2(U) . kfk2Hs(U).

Let us now consider the more general case of an elliptic equation in the form (6.5)
with a second-order elliptic operatorP with coe�cients aij , bi, c 2 L1(U) in divergence
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form, and which satisfies the uniform ellipticity condition on U . We assume that we
are in the situation (I) in the theorem 6.5 above, i.e. there is no non-zero solution
to the homogeneous problem. Then the previous proof shows that the solution map
S : L2(U) ! H1

0 (U) is well-defined, linear and continuous. In particular the L2(U)
norm of u is controlled by that of f . This allows to “fix” the following incomplete a
priori estimate that we have already seen:

kuk2
Ḣ1(U) = hhu, uii  hPu, ui+ kuk2L2(U)

 CUkfkL2(U)kukL2(U) + kuk2L2(U)

. kfk2L2(U) + kuk2L2(U) . kfk2L2(U)

in the sense that the RHS in now fulling under control (in the last inequality we use the
continuity of the solution map) and one can use the estimate to gain further knowledge
on the higher regularity of the solution. In other words the inductive structure of the a
priori estimate is still preserved.

Remark 7.1. Actually the discussion on the last equation is slightly artificial since
the solution map already provides the H1

0 regularity. However the idea is important for
higher regularity, and leads to the next a priori estimate.

Going back the full elliptic regularity estimate again now, we expect that, away
from boundary, we would have the stronger estimate

kuk2
Ḣ2(V) . kfk2L2(U) + kukḢ1(U) . kfk2L2(U) + kuk2L2(U) . kfk2L2(U)

where V is an open set with V ⇢ U , and we have used the previous estimate in the last
inequality. Then using the fact that the boundary is non-characteristic for an elliptic
PDE we would then expect formally to extend it to

kuk2
Ḣ2(U) . kfk2L2(U) + kuk2L2(U) . kfk2L2(U).

Finally it is again not hard to convince oneself formally that one should expect the
same a priori estimate to hold at any order of regularity:

8 s 2 N, kuk2
Ḣs+2(U) . kfk2Hs(U) + kuk2

Ḣs(U) . kfk2Hs(U) + kuk2L2(U) . kfk2Hs(U).

This “starting point”, i.e. solving the equation in some “ground functional space”
was provided by the careful study of the kernel of a Fredholm operator. Once obtained
however the a priori estimate can now be used again, as it shows a gain of two derivative
and can be used “inductively”.

Now the question is again: how to transform these formal arguments into rigorous
ones? Observe that the previous calculations do not constitute a proof, as they assume
the regularity of u. We need again some approximation argument. The point is to derive
analytic estimates from the structural, algebraic assumption of ellipticity.

We already, in the beginning of this chapter, presented a classical such approxima-
tion argument based on the convolution by a mollifier. The proofs in the rest of this
section could be performed with this approximation, which is a good exercise. We shall
present another interesting approximation argument, based on the discretisation of the
di↵erentiation process.
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Definition 7.2. We introduce the so-called di↵erence quotients. For each coordi-
nate i, and each h 2 R \ {0}, we define

Dh
i u :=

u(x1, . . . , xi�1, xi + h, xi+1, . . . , x`)� u(x1, . . . , x`)

h

Let us prove that (1) if u 2 Hs(R`), then so does Dh
i u, (2) conversely if Dh

i u is
uniformly bounded in L2(R`) as h ! 0 then @iu 2 L2(R`). And similarly for functions
which are supported inside some open set V whose closure is contained in U , as long as
h is su�ciently small. Since classical derivatives commute with the di↵erence quotients,
it is enough to prove the result for s = 0.

Proposition 7.3 (Manipulation of the di↵erence quotient). First for u 2 H1(U),
there is C1 > 0 so that

8 |h| 2 (0, h0),
�

�

�

Dh
i u
�

�

�

L2(V)
 C1k@iukL2(U)

where h0 2 (0, dist(V, @U)) is so that Dh
i u is well-defined on V.

Second assume that for u 2 L2(V) with support included in V there is a constant
C2 > 0 so that

8 |h| 2 (0, h0),
�

�

�

Dh
i u
�

�

�

L2(U)
 C2,

then u 2 H1(V) with
k@iukL2(V)  C2.

Proof of Proposition 7.3. We consider first smooth functions and then argue
by density. The first part relies on the Taylor integral formula:

u(x+ hei)� u(x) =

ˆ 1

0
@iu(x+ thei)h dt

and thereforeˆ
V

�

�

�

Dh
i

�

�

�

2
dx . |h0|

ˆ 1

0

✓ˆ
V
|@iu(x+ tei)|2 dx

◆

dt .
ˆ
U
|@iu(y)|2 dy.

For the second part, we first note the following discrete integration-by-parts formula:
for u 2 L2(V) with support included in V and ' 2 C1

c (V)ˆ
V
u(x)



'(x+ hei)� '(x)

h

�

dx = �
ˆ
V



u(x� hei)� u(x)

h

�

'(x) dx

which means ˆ
V
u(x)Dh

i '(x) dx = �
ˆ
V
D�h

i u(x)'(x) dx

The assumption means that

sup
|h|2(0,h0)

�

�

�

D�h
i u

�

�

�

L2(V)
< 1

and therefore (weak compactness of the unit ball) there is a subsequence hk ! 0 so
that D�hk

i u * vi for some vi 2 L2(V) with

kvikL2(V)  sup
|h|2(0,h0)

�

�

�

D�h
i u

�

�

�

L2(V)
.
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But then if ' 2 C1
c (V) we obviously have Dh

i ' ! @i' with uniform (and L2!) conver-
gence, and thereforeˆ

V
u@i' dx =

ˆ
V
u@i' dx = lim

hk!0

ˆ
V
uDhk

i ' dx.

But the RHS is alsoˆ
V
uDhk

i ' dx = �
ˆ
V
D�hk

i u' dx
hk!0���! �

ˆ
V
vi' dx

from the weak convergence. This implies that

8' 2 C1
c (V),

ˆ
V
u@i' dx = �

ˆ
U
vi' dx.

This shows from the definition of generalised derivatives that the generalised derivative
@iu = vi exists and is L2(V), which concludes the proof. ⇤

7.2. Interior regularity. We first consider the case s = 0 in the gain of regularity,
with f 2 L2(U) and the usual other assumptions, plus aij , bi, c 2 C1(U) \ L1(U).
Consider the situation (I) and a solution u to the elliptic problem Pu = f in H1(U).

Let us show that u 2 H2
loc(U). This is the space of locally H2 functions, i.e. that

are H2 on any compact included in U . Therefore we want to show that for any open
subset V ⇢⇢ U (i.e. V ⇢ U) we have the estimate

kuk2H2(V)  C
⇣

kfk2L2(U) + kuk2L2(U)

⌘

where the constant C > 0 depends on U , V, and the coe�cients of L.

Remark 7.4. The boundary conditions are not required in the proof here, as we
shall stay away from the boundary, i.e. we do not require u 2 H1

0 (U) here but only
u 2 H1(U) and solves the PDE in weak sense: it is enough that u is a (we do not care
about uniqueness here) solution to Pu = f in the open set U in weak sense, and that
aij , bi, c 2 C1(U) (no L1(U) is required on the coe�cients in the regularity study of the
interior, unless one is interested in how the estimates “degenerate” at the boundary;
similarly for higher regularity we will only need aij , bi, c 2 Ck(U). . . ).

Remark 7.5. Observe also that it allows to make sense of the PDE in the almost
everywhere sense, as it shows that in the open set U , a distributional second-order
derivative exists in L2

loc(U), and by integration by parts one can recover Pu = f almost
everywhere from the weak form.

Choose an open set W with V ⇢⇢ W ⇢⇢ U (the symbol ⇢⇢ means “included in
a compact set included in”). Define a localisation smooth function ⇣ 2 C1

c (V) with
support in U and which is one on V and zero outside W ⇢⇢ U , and the following test
function

v := �D�h
i (⇣2Dh

i u)

for any index i. We then use the weak formulationˆ
U
(ru)TA(x)(rv) dx =

ˆ
U
f̃v dx, f̃(x) := f(x)�r · (B(x)u)� c(x)u(x).
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From the construction of weak solution in H1
0 (U) and the assumption on the coe�cients

bi, c, we know that f̃ 2 L2(V). We know calculate for the LHSˆ
U
(ru)TA(x)(rv) dx = �

ˆ
U
(ru)TA(x)(rD�h

i (⇣2Dh
i u)) dx

= �
ˆ
U
(ru)TA(x)(D�h

i r(⇣2Dh
i u)) dx

=

ˆ
U
(Dh

i ru)TA(x)(r(⇣2Dh
i u)) dx+

ˆ
U
(ru)TDh

i A(x)(r(⇣2Dh
i u)) dx

=

ˆ
U
⇣2(Dh

i ru)TA(x)(r(Dh
i u)) dx+

ˆ
U
2(Dh

i ru)TA(x)(r⇣)⇣(Dh
i u) dx

+

ˆ
U
⇣2(ru)TDh

i A(x)(r(Dh
i u)) dx+ 2

ˆ
U
(ru)TDh

i A(x)(r⇣)⇣Dh
i u dx

=: I1 + I2 + I3 + I4

where we have used the commutation rDh
i = Dh

i r, and the distributivity Dh
i (uv) =

(Dh
i u)v + u(Dh

i v).
We calculate for the first term, using the ellipticity assumption,

I1 � �e

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx.

We calculate for the second term, using Cauchy-Schwarz’ inequality and the bounds
on ⇣,

I2 � �"

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx� C

"

ˆ
U
|r⇣|2

�

�

�

Dh
i u
�

�

�

2
dx

� �"

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx� C

"
kuk2H1(W)

for any " > 0 and some constant C > 0. We calculate similarly for the third term,
using Cauchy-Schwarz’ inequality,

I3 � �"

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx� C

"

ˆ
U
⇣2
�

�

�

Dh
i u
�

�

�

2
dx

� �"

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx� C

"
kuk2H1(W).

Finally we calculate for the last term, using the bounds on ⇣,

I4 � �Ckuk2H1(W).

Choosing " = �e/3 we deduce that

I1 + I2 + I3 + I4 �
�e

3

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx� C 0kuk2H1(W)

for some other constant C 0 > 0.
Going back to the weak formulation, we now estimate the RHS:ˆ

U
f̃v dx .

�

�

�

f̃
�

�

�

L2(W)
kvkL2(W)
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 C"kfk2L2(W) + C"kukH1(W) + "

ˆ
W

⇣2
�

�

�

D�h
i Dh

i u
�

�

�

2
dx

for any " > 0 and some corresponding constant C" > 0. We deduce thatˆ
V

�

�

�

Dh
i ru

�

�

�

2
dx 

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx

 C 0
"kfk2L2(W) + C 0

"kuk2H1(W) + "

ˆ
W

⇣2
�

�

�

D�h
i Dh

i u
�

�

�

2
dx.

Finally using the property of the di↵erence quotient we deduce

k@iruk2L2(V)  C 0
"kfk2L2(W) + C 0

"kuk2H1(W) + "
�

�r2u
�

�

L2(W)
.

and since it is true for any i = 1, . . . , `,
�

�r2u
�

�

2

L2(V)  C 00
" kfk2L2(W) + C 00

" kuk2H1(W) + "
�

�r2u
�

�

L2(W)
.

By taking " small enough it concludes the proof of
�

�r2u
�

�

2

L2(V) . kfk2L2(W) + kuk2H1(W).

Let us now explain how to prove higher-order interior regularity estimates. We
argue by induction with the induction assumption

(Hm)

8

>

>

<

>

>

:

aij , bi, c 2 Cm+1(U)

f 2 Hm
loc(U)

Pu = f in any W ⇢⇢ U

9

>

>

=

>

>

;

=) u 2 Hm+2
loc (U)

on m 2 N.
The initialisation of the induction (H0) was proven above. Assume (Hm) holds

with m � 1, and assume that aij , bi, c 2 Cm+2
B (U) and f 2 Hm+1(U). Let us prove

that u 2 Hm+3
loc (U). Consider any first order derivative @i and estimate the weak

formulation with �@iṽ, ṽ 2 C1
c (U) (with support included in W ⇢⇢ U).

Let us recall the weak formulation

8 v 2 H1
0 (U), B(u, v) = Lv

with
8

>

<

>

:

B(u, v) =

ˆ
U
(ru)TA(x)(rv) dx+

ˆ
U
vB(x) ·ru dx+

ˆ
U
cuv dx,

Lv = hf, vi.
and let us also recall that is enough to check this formulation for v 2 C1

c (U) by
approximation of H1

0 (U) functions.
An easy calculation by integration by parts shows thatˆ
U
(r@iu)

TA(x)(rṽ) dx+

ˆ
U
ṽB(x) ·r@iu dx+

ˆ
U
c@iuṽ dx

=

ˆ
U
(@if � @icu� @iB(x) ·ru) ṽ dx
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which means that ũ = @iu satisfies

B(ũ, ṽ) = L̃ṽ, L̃w :=

ˆ
U
f̃w dx, f̃ := @if � @icu� @iB(x) ·ru.

Since m � 1, we know that u 2 H3(W), and therefore the equation translates into

Pũ = f̃

in weak sense on W. Since f̃ 2 Hm(W) we deduce from the previous study that
ũ = @iu 2 Hm+2(W). Since it is true for any first-order partial derivative @i and any
W ⇢⇢ U we deduce that u 2 Hm+3

loc (U). This concludes the proof of the induction.

We deduce from this subsection the following property, similar to that we have
proved for classical solutions in the whole plane: if aij , bi, c, f 2 C1(U) and u 2 H1

0 (U)
is a weak solution to Pu = f , with the uniform ellipticity assumption, then u 2 C1(U).
Observe that it says nothing so far about the possible singularities of u at the boundary,
only that any such possible singularities do not propagate into the interior.

7.3. Boundary regularity. We first consider again the gain of H2(U) regularity,
but in the whole domain, i.e. including the boundary. We consider aij , bi, c 2 C1(U),
and assume that @U is C2. As became clear from the previous subsection, the regularity
study is an a priori study. This notion is simple but extremely important: this means
that the argument applies to any solutions that satisfies a minimal set of assumptions.
To be concrete we proved the interior regularity as soon as aij , bi, c, f 2 C1(U) and
u 2 H1(U) solves in the weak sense Pu = f in the open set U .

In the case of the boundary regularity we now need to impose, on the contrary to
the previous case, some boundary conditions on u, and we shall therefore assume that
u 2 H1

0 (U). We also need now some estimates on the coe�cients and the forcing term
f that are uniform when approaching the boundary. Recall that if, furthermore, we
assume that u is the solution to the Dirichlet problem given by the situation (I) in the
study we made before, then we have the additional information

kukH1
0 (U) . kfkL2(U).

We now want to show that u 2 H2(U) with the precise estimate

kukH2(U) . kfkL2(U) + kukH1(U).

From the previous interior regularity study it is clear that it is enough to prove the
result in neighborhoods of the boundary.

We first consider the case where U = B(0, 1)\R`
+ is a half-ball, with R`

+ = {x` � 0}.
Consider the subset V = B(0, 1/2) \R`

+ and some smooth localisation function ⇣ that
is 1 on V and zero outside B(0, 1), with 0  ⇣  1.

For any coordinate i 2 {1, . . . , `�1} that is tangential to the boundary, we consider
the test function v := �D�h

i (⇣2Dh
i u), which belongs to H1

0 (U). Indeed heuristically

v(x) = � 1

h2
�

⇣2(x� hei)(u(x)� u(x� hek))� ⇣2(x)(u(x+ hek)� u(x))
�

.

and the RHS cancels at x` = 0. Rigorously we must prove that there is vn ! v with
vn 2 C1

c (U): indeed a sequence un ! u, un 2 C1
c (U) certainly exists for u 2 H1

0 (U),
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and then one checks that

vn(x) := � 1

h2
�

⇣2(x� hei)(un(x)� un(x� hek))� ⇣2(x)(un(x+ hek)� un(x))
�

belongs to C1
c (U) with vn ! v in H1(U).

Then reproducing the same key calculation performed for the interior regularity
(relying on the uniform ellipticity estimate and the bound on the coe�cients) we easily
get ˆ

V

�

�

�

Dh
i ru

�

�

�

2
dx 

ˆ
U
⇣2
�

�

�

Dh
i ru

�

�

�

2
dx . kfk2L2(U) + kuk2H1(U)

(observe that here we use bounds on the coe�cients up to the boundary) which shows
that

8 i 2 {1, . . . , `� 1}, k@iruk2L2(V) . kfk2L2(U) + kuk2H1(U).

We still need to estimate the derivative along the last coordinate @`. But then observe
that the uniform ellipticity A(x) � �e > 0 on the symmetric matrix A(x) implies that
(consider the quadratic form at the vector e`) that a`` � �e > 0. Hence using the
following equality on V

a``@
2
``u = �

`�1
X

j=1

X̀

i=1

@j(aij(x)@iu(x))� (@`a``)@`u�B(x) ·ru� cu

between L2(V) functions, we deduce that @2
``u 2 L2(V) (using the bounds on the

coe�cients), which finally shows that

kukH2(V) . kfkL2(U) + kukH1(U).

Let us consider the case of a general boundary shape. For the sake of simplicity we
now rewrite the PDE in non-divergence form

X̀

i,j=1

aij(x)@
2
iju+

X̀

i=1

bi(x)@iu+ cu = f,

which changes only the coe�cients bi, c, still denoted with the same name by a slight
abuse of notation. Consider a base point x0 2 @U on the boundary. Using the regularity
assumption on the boundary we have (for r small enough so that any sphere with radius
with 0 < r0  r intersects @U as a connected `� 2-hypersurface)

U \B(x0, r) = {x` > '(x1, . . . , x`�1)} \B(x0, r)

where ' : R`�1 ! R is C2. We now perform the same kind of change of variable as in
the proof of the Cauchy-Kovalevskaya theorem (however with less regularity): � 2 C2

maps U \B(x0, r) to

Ũx0 := {y 2 B(0, r̃) : y` > 0}
where furthermore the normal vectors to @U are mapped to e`, and we write  for the
inverse of �. This maps the PDE to a new PDE

P̃ũ = f̃
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for a second-order linear operator P̃ of the same form, with ũ(y) = u( (y)), f̃ =
f( (y)), c̃(y) = c( (y)), and (using the chain rule)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ãkl(y) :=
X̀

i,j=1

aij( (y))(@i�)k( (y))(@j�)l( (y)),

b̃k(y) :=
X̀

i=1

bi( (y))(@i�)k( (y)).

Exercise 43. Check the previous transformation and prove that it preserves the
regularity and pointwise bounds from above on the coe�cients.

Let us now prove that the new operator P̃ is uniformly elliptic. Consider any point
y 2 Ũx0 , and any ⇠ 2 R` and calculate

�̃p(x, ⇠) =
X̀

k,l=1

ãkl(y)⇠k⇠l =
X̀

k,l=1

X̀

i,j=1

aij( (y))(@i�)k( (y))⇠k(@j�)l( (y))⇠l

=
X̀

i,j=1

aij( (y))(⌅D�( (y)))i(⌅D�( (y)))j

where we denoted D�(x) = ((@i�)j)j,i the ` ⇥ ` usual jacobian matrix, and ⌅ =
(⇠1, . . . , ⇠`). Let us denote ⇥ = ⌅D�( (y)). This relation can be inverted as ⌅ =
⇥D (y). Now using the uniform bounds on the di↵erential we have |⇥|2 � CV 0,�|⌅|2
and we deduce

�̃p(x, ⇠) � �e|⇥|2 � �eCV 0,�|⌅|2

which allows to apply the previous study of the half-ball and concludes the proof of
the regularity in V by using the transformation  .

Finally since @U is compact we can use a finite covering by small enough balls, and
taking the worst constant, it concludes the proof.

Exercise 44. Prove the higher-order boundary regularity statement: for aij , bi, c 2
Cm+1(U), a Cm+2 boundary @U and f 2 Hm(U), any weak solution u 2 H1

0 (U) to
Pu = f is Hm+2(U) with

kukHm+2(U) . kfkHm(U) + kukL2(U).

8. Maximum principles for elliptic equations

We now see a last fundamental property of elliptic (and parabolic!) equations,
that of maximum principles. The idea is now to quantify in a pointwise (instead of
integral as in the energy estimates) manner the “negative” aspect of the operator. To
be more precise we want to exploit the following basis remark: if u 2 C2 attains a
maximum x0 2 U in the interior of the domain of definition of u, then ru(x0) = 0
and r2u(x0)  0 (i.e. the symmetric matrix is matrix r2u is non-positive at x0). It
is clear that we will need then that u is a classical solution in C2 to exploit this idea.
We know however from the previous study than any weak solution is indeed in C2 for
a right-hand side f regular enough.



90 3. ELLIPTICITY: LAPLACE, POISSON AND DIFFUSION EQUATIONS

We consider a second-order di↵erential operator in non-divergence form

Pu = �
X̀

i,j=1

aij(x)@
2
iju(x) +B(x) ·ru(x) + c(x)u(x)

and we assume the uniform ellipticity condition, as well as aij , bi, c 2 C0(U) (and the
symmetry w.l.o.g. of A = (aij)).

8.1. Weak maximum principle with no zero-order term.

Proposition 8.1. Let us first assume that c = 0. Then the weak version of the
maximum principle states that for any u 2 C2(U) \ C0(U) so that Pu  0 (resp.
Pu � 0) in U , then the maximum (resp. minimum) of u on U is attained at the
boundary @U .

Remark 8.2. Such functions are called subsolutions (resp. supersolutions), just
like for ordinary di↵erential inequalities.

Let us prove this property. We obviously only need to study subsolutions thanks
to the transformation u ! �u. We shall reduce to the case where Pu < 0 on U by an
important lifting argument (see later). So let us now assume that u 2 C2(U) \ C0(U)
with Pu < 0 on U .

In a first stage, to see the naked idea of the proof, simplify a bit further and assume
that P = ��+B(x) ·r. Then argue by contradiction: assume there is a point x0 2 U
so that u is maximum at x0. Basic calculus of variation then shows that �u(x0)  0
and ru(x0) = 0 which implies that Pu(x0) � 0 and therefore a contradiction. In the
general setting the matrix A(x0) can be diagonalised by some orthogonal `⇥ `-matrix
Q:

A(x0) = QTDiag(�1, . . . ,�`)Q

with �i � �e for any i 2 {1, . . . , `}. Define the new variable y = x0 + Q(x � x0) by a
“rotation” around x0. Then at x0:

X̀

i,j=1

aij(x)@
2
xixj

u(x0)

=
X̀

i,j=1

X̀

k,l=1

aij(x)QkiQlj@
2
ykyl

u(x0) =
X̀

k=1

�k@
2
ykyk

u(x0)  0

and we deduce again that Pu(x0) � 0, which contradicts the assumption.
Let us now consider the lifting argument. This is a further instance of approxi-

mation: the key thing is that the property we are searching for is stable by uniform
convergence approximation, whereas the closure of our assumption Pu < 0 under this
convergence includes Pu  0.

More precisely we define u"(x) = u(x) + ✏ex1 with ✏ > 0 meant to be small, and 
meant to be large. Then prove that Pu✏ < 0 for  large enough:

�
X̀

i,j=1

aij(x)@
2
iju✏(x) +

X̀

i=1

bi(x)@iu✏(x)
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= Pu(x) + ✏ex1 (�a11(x) + b1(x))  ✏ex1(��e + kb1k1)

which yields the required control by choosing  � 2kb1k1/�e.
Then we deduce, using the previous step, that

8 ✏ > 0, max
U

u✏ = max
@U

u✏

and pass to the limit " ! 0 to conclude the proof.

8.2. Weak maximum principle with a signed zero-order term. Now let us
consider the case where we include a zero-order term c in the formula for P . In order to
fit with the idea that the operator should push “up” (resp. down) when at a maximum
(resp. minimum), we assume that c � 0, as the maximum (resp. minimum) will only
be considered for non-negative (resp. non-positive) values.

Proposition 8.3. Assume Pu  0 (resp. Pu � 0) and c � 0 in U , then

max
U

u  max
@U

u+

✓

resp. min
U

u � �max
@U

u�
◆

where u+ � 0 (resp. u� � 0) denotes the non-negative (resp. non-positive) part of u.

The proof is straightforward by considering the region where u � 0. Consider
w.l.o.g. the case of a subsolution Pu  0 and define the open set V ⇢ U by

V := {x 2 U : u(x) > 0} .
If V = ; we are done, else observe that in V we have P̃ u := Pu� cu  0 and P̃ has no
zero-order term. We can therefore apply the previous result to conclude.


