
CHAPTER 4

Hyperbolicity: scalar transport equations, wave equations

This chapter studies linear transport equations on some simple examples. The goal
is to introduce rigorous classes of solutions for these PDEs thanks to the notion of char-
acteristic trajectories. Weak solutions again shall be considered by duality formulation,
and again we will not avoid presenting the complete theory of distributions.

The characteristic method is enlighting about the link between ODEs and PDEs.
It reveals a certain of PDEs as a “continuum” of ODEs.

We shall in the last chapter about non-linearity some famous but simple problems
about non-linear transport equations: the Vlasov equation, the Riemann problem for
the Burgers equation.

Acknowledgements. This chapter is strongly inspired (in particular for weak and
entropic solutions to the Burgers equation where we follow it almost exactly) by the
excellent book of Denis Serre “Systems of conservation laws 1: Hyperbolicity, Entropies,
Shock Waves”, Cambridge University Press.

1. Introduction to the problem

“Transport phenomena” can mean particles –matter in general– transported along
a flow (air, river, etc.), but it can also mean information transported, e.g. oscillations
propagating for the wave equation. Applications of transport equations are vast and
concern fluid mechanics, plasma physics, astrophysics, mathematical ecology, etc.

1.1. The class of equations. Consider a smooth open set U ⇢ Rd. Later in
this chapter we will in fact mostly restrict ourself to the cases where U = Rd is the
whole space, or U = Td is the flat d-dimensional torus. There are the two simplest
mathematical situation (unbounded and bounded) avoiding the presence of a boundary.
In the presence of a boundary, the definition of the Cauchy problem should include
boundary data, and discuss the question of whether the Cauchy hypersurface and
Cauchy data are characteristic are not.

Let us make some recall about the main questions we want to ask about the Cauchy
problem:

Consider T 2 R+ [ {+1} and N ⇥N matrices Ai(t, x, u), 1  i  d
that are smooth in (t, x, u) 2 [0, T ] ⇥ U ⇥ RN . We search for u(t, x)
on [0, T ]⇥ U and valued in RN , solution to

(1.1) @tu+
d
X

i=1

Ai(t, x, u) @xiu = 0, (t, x) 2 [0, T ]⇥ U .
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Remark 1.1. Note that the dimension of the arrival space is in general di↵erent
from that of the departure space, and they do not play the same role. The integer d is
the number of space (or phase space for kinetic equations) coordinates, whereas N is
the number of scalar unknowns and evolution equations. When d = 1 we say that the
equation is monodimensional, and when N = 1 we say that the equation is scalar.

We shall study the increasingly complicated following examples:

(1) The monodimensional scalar equation (N = d = 1)

(1.2) @tu+A(t, x, u) @xu = 0.

Recall that even if d = 1, it is not an ODE because of the time variable (` = 2 in
the previous chapters notation). This first case has already a rich structure and
we shall look at first the linear equation with constant coe�cient A = c 2 R,
and then the linear case with space-dependent coe�cient A = A(x).

(2) Then we shall study the multidimensional (d � 2) scalar (N = 1) linear
transport equation, with Ai = Ai(t, x). This will illustrate the power of the
characteristic methods. This class of equations includes the Liouville equation
for particle systems.

(3) In the last chapter about nonlinear equations, we shall briefly study two
nonlinear cases. First the monodimensional scalar equation with coe�cient
A = A(u) depending on the solution but not time or space: A(t, x, u) = f(u).
This class of equations includes the Burgers equation and shows formation
of shocks. Second we shall look at the Vlasov equation (for smooth interac-
tions), which is a multidimensional scalar transport equation describing many
mean-field many-body systems.

1.2. The initial value problem. Consider now U = Rd (check as an exercise
how to adapt everything in the case of U = Td).

Problem 1 (existence). Given u0 on Rd, is there at least one
solution u(t, x), t 2 [0, T ], x 2 Rd, defined for a non-zero time T > 0,
to the equation (1.1), with the initial data u(0, x) = u0(x), x 2 Rd?

As we saw previously to make this question precise, one needs to specify the func-
tional space (or other restrictions) in which the solution is searched for, that is the
class of solutions. When T = +1 we say that the solution is global. When the solu-
tion is regular enough for defining the derivatives appearing in the PDE in the classical
di↵erential calculus manner, we call it a classical or strong solution. Else the equation
has to be reformulated by duality (or equivalently in the sense of distributions) and we
call it a weak solution.

Problem 2 (uniqueness). Given u0 on Rd and u1(t, x) et u2(t, x)
two solutions on [0, T ] ⇥ Rd with same initial data u0, do we have
u1 = u2?

Again to make this question precise, one has to specify the functional space. But
now this is slightly more subtle than the existence problem. Not only one has to specify
the functional space in which u0, u1, u2 are considered, but also the functional space in
which uniqueness is asked. And these two spaces can be di↵erent. For instance there
can be uniqueness within the class of smooth solutions but infinitely many solutions
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in L1, and moreover uniqueness of smooth solutions within L1, which means if u0 is
smooth and u1 is smooth and u2 is L1, then u1 = u2, implying in particular that u2 is
smooth. This is the basis of weak-strong uniqueness principles.

Problem 3 (regularity). Given u0 on Rd and, assuming existence,
a solution u(t, x) on [0, T ]⇥Rd with initial data u0, where the initial
data u0 has a certain regularity (Ck or Hk or Hölder, etc.), then does
the solution u(t, x) enjoys this same regularity on the x-variable for
t 2 [0, T ]?

Observe that the last question is often linked to the second one, as the regularity
of the solution helps in proving uniqueness (think to Grönwall estimates). However for
nonlinear transport equations, this is not true in general that the regularity is propa-
gated, as shown for instance by the formation of shocks in fluid mechanics. The latter
case also shows an interesting problem for uniqueness, where the L1 weak solutions
are not unique, but one has to add some further entropic conditions guided by the
intuition from physics in order to restore uniqueness.

1.3. Some examples.
1.3.1. The linear transport. Consider for c 2 R (N = d = 1 here)

(1.3)

(

@tu+ c @xu = 0, t � 0, x 2 R,
u(0, x) = u0(x), x 2 R.

This models transport of particles on a line with algebraic velocity c, and u is the
density of particles at time t and point x along the line.

1.3.2. Burgers and tra�c flow equations. The Burgers’ equation is the Euler in
dimension 1 for the velocity field of a compressible gas:

(1.4) @tu+ @x

✓

u2

2

◆

= 0.

The (simplest form of the) tra�c flow equation is a nonlinear monodimensional
scalar transport equation

(1.5) @t⇢+ @x
�

⇢u(⇢)
�

= 0.

Let us now briefly sketch the modelling of the latter equation. This is important
to understand the meaning of models for guiding mathematical estimates and also this
simple case allows to illustrate easily how to translate basic principles into PDEs.

Consider a road with only one line of cars, no entry or exit. Suppose that the typical
size of a car is much smaller to the scale of the road and (more importantly) the scale
at which we observe the road. We then model the car flow in a “continuum” manner,
i.e. like a fluid. We call ⇢(t, x) the density of cars at t, x, u(t, x) the velocity field of
cars at t, x, and q(t, x) their flux at t, x. (These quantities are in fact local averages on
small portions of the road, e.g. one or two white bands. . . ) Then the quantity of cars
in [x, x+ �x] at time t is ⇢(t, x)�x, and at time t+ �t is ⇢(t+ �t, x)�x. By conservation
of the number of cars this is also the di↵erence of the fluxes at x between times t and
t+ �t, minus the fluxes at x+ �x between times t and t+ �t, which gives

⇢(t+ �t, x)�x� ⇢(t, x)�x = q(t, x)�t� q(t, x+ �x)�t
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⇢

u(⇢)

Figure 1.1. Drivers’ behavior.

and thus
⇢(t+ �t, x)� ⇢(t, x)

�t
+

q(t, x+ �x)� q(t, x)

�x
= 0.

Taking �t, �x ! 0, we get @t⇢ + @xq = 0. This equation is sometimes called the
continuity equation, it expresses the conservation of the number of cars, and it belongs
the class of so-called conservation equations, in hyperbolic equations.

This equation is not closed, it needs be complemented by a state equation allowing
to determine the flux q in terms of the density ⇢. In this case it will be deduced by
observing the statistical behavior of drivers. Let us first write q(t, x) = ⇢(t, x)u(t, x)
and assume that u = u(⇢), i.e. saying that in first approximation the behavior of
drivers is determined by density locally observed around them. The curve ⇢ 7! u(⇢)
is experiementally determined, in general decreasing from u(0) = 130 km/h down to
u(⇢1) = 0 with ⇢1 > 0 the maximal density possible on this road.

We obtain finally the nonlinear transport PDE @t⇢+ @x
�

⇢u(⇢)
�

= 0 as announced
before. A typical theorem one can prove is that for the previous curve u(⇢) there are
in general developpement of tra�c jams. The previous discussion is called a derivation
of the equation, it is a formal (physics) discussion that can be sometimes transformed
into a rigorous derivation when the solutions to some Cauchy problem of a more mi-
croscopical evolution can be shown to converge to the solutions to the Cauchy problem
of the transport equation we derivate.

1.3.3. Gas dynamics. Euler equations for compressible gases in dimension 3 write

@t⇢+ @x1

�

⇢u1
�

+ @x2

�

⇢u2
�

+ @x3

�

⇢u3
�

= 0(1.6)

8 i = 1, . . . , d, @t(⇢ui) +
d
X

j=1

@j(uj ⇢ui) + @ip(⇢) = 0.(1.7)
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on the density ⇢ and velocity field u, complemented with a state equation on the
pressure p = p(⇢). We can write a third equation on the temperature field.

1.3.4. The Liouville equation. This is a transport equation on the density probabil-
ity Fn(t,X, V ) = Fn(t, x1, . . . , xn, v1, . . . , vn) of n particles following Newton equations
associated with the Hamilton function

H(X,V ) =
n
X

i=1

|vi|2
2

+
X

i 6=j

V (|xi � xj |) +
n
X

i=1

�(xi)

with xi, vi 2 Rm. The equation writes in abstract form

@tF
n +rV H ·rXFn �rXH ·rV F

n = 0

or more explicitely

@tF
n + V ·rXFn �

n
X

i=1

X

j 6=i

rxiV (|xi � xj |) ·rviF
n �rX� ·rV F

n = 0.

This enters the previous framework as a linear scalar transport equation with N = 1
and d = 2m.

1.3.5. The (Jeans)-Vlasov equation. The Vlasov is obtained from the Liouville for-
mally by the so-called mean-field limit. It writes (without external forces)

@tf + v ·rxf =

ˆ
y,w

(rxV̄ )(x� y)f(t, y, w)rvf(t, x, v) =
�

rxV̄ ⇤ ⇢[f ]
�

·rvf

with

⇢[f ](t, y) =

ˆ
w
f(t, y, w).

The function V̄ is the interaction potential, and the force
�

rxV̄ ⇤ ⇢[f ]
�

is self-induced
by f . This is a multidimensional scalar nonlinear transport equation. When V̄ is the
Coulomb or Newton interaction potential, one recovers the Poisson equation �V = ±⇢
on the mean-field potential V :=

�

V̄ ⇤ ⇢[f ]
�

, that we have studied before.
1.3.6. The Wigner equation. An interesting other case is that of the Wigner equa-

tion in quantum physics: consider the so-called Wigner distribution

w(t, x, ⇠) :=
1

(2⇡)d

ˆ
Rd

⇢
⇣

t, x+
⌘

2
, x� ⌘

2

⌘

e�i⇠·⌘ d⌘.

of the density matrix ⇢(t, x, y). Then it satisfies the Wigner nonlinear transport equa-
tion

(

@tw + ⇠ ·rxw +⇥[V ]w = 0,

w|t=0 = w0(x, ⇠),

with

(⇥[V ]f)(x, ⇠) := � i

(2⇡)d

¨
R2d

�V (x, ⌘) f(x, ⇠0) ei⌘·(⇠�⇠0) d⇠0 d⌘,(1.8)

where the symbol �V is given by

�V (x, ⌘) = V
⇣

x+
⌘

2

⌘

� V
⇣

x� ⌘

2

⌘

.(1.9)
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For a pure state given by the wave function  (t, x) the density matrix ⇢ is (the
kernel of) the projection operator | ih |, which satisfies the Schrödinger equation

i~@t = H , H = � ~
2m

� + V  .

The density matrix satisfies the Von Neumann equation

i~@t⇢ = [H, ⇢]

where the RHS is given by a commutator when ⇢ is interpreted as an operator.

2. The linear transport with constant coe�cient

Consider for c 2 R and T 2 R⇤
+ [ {+1}:

(2.1)

(

@tu+ c @xu = 0, t 2 [0, T ], x 2 R
u(0, x) = u0, x 2 R.

2.1. Classical solutions.

Definition 2.1. Assume that u0 2 C1(R). Then u = u(t, x), t 2 [0, T ], x 2 R
is called a classical solution to (2.1) with initial data u0, if u 2 C1([0, T ] ⇥ R) and u
satisfies (2.1) in the sense of a pointwise equality between continuous functions.

Theorem 2.2. Assume that u0 2 C1(R). Then there exists a unique global classical
solution to (2.1). Moreover it is given by the following characteristic formula

8 t � 0, x 2 R, u(t, x) = u0(x� ct).

Remark 2.3. Note that the uniqueness is true among all classical solutions (i.e.
on any time interval [0, T ], not only the global ones. This is clear from the proof below.

Proof. Let us consider separately the questions of existence and uniqueness.

Existence: Consider the function

u(t, x) := u0(x� ct), t � 0, x 2 R.
It belongs to C1(R+ ⇥R by composition rule, and satisfies u(0, x) = u0(x) for x 2 Rd.
By chain rule, we compute its partial derivatives

@tu = �c u00(x� ct), @xu = u00(x� ct)

and conclude that it satisfies the equation @tu + c @xu = 0 on R+ ⇥ R, which shows
existence.

Uniqueness: Consider a classical solution u on [0, T ] so that u(0, x) = u0. Define

'(t, x) = u(t, x+ ct).

The function ' is C1 by composition and

@t' = @tu+ c @xu = 0.

We deduce by the fundamental theorem of calculus that

8 t 2 [0, T ], x 2 R, '(t, x) = '(0, x) = u0(x)
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t

u(t, x)

u0(x)

Figure 2.1. Picture of characteristics.

which proves that

8 t 2 [0, T ], x 2 R, u(t, x+ ct) = u0(x),

and shows that u(t, x) = u0(x� ct) is the unique solution constructed before. ⇤

Let us now add a source term to make the problem more complex. This shall
be the occasion to introduce the Duhamel principle, which is the PDE version of the
method of variation of the constant in ODE. Consider h = h(t, x) 2 C1(R+ ⇥ R) and
the equation

@tu+ c @xu = h, 8 t � 0, x 2 R,(2.2)

u(0, x) = u0(x), 8x 2 R.(2.3)

We define the notion of classical solutions as before.

Definition 2.4. Given h 2 C1(R+ ⇥ R) and u0 2 C1(R), we call u = u(t, x), t 2
[0, T ], x 2 R a classical solution to (2.2)-(2.3) for the initial data u0 if u 2 C1([0, T ]⇥R)
and u satisfies (2.2)-(2.3) as a pointwise equality between continuous funtions.

Theorem 2.5. Given h 2 C1(R+ ⇥ R) and u0 2 C1(R), there exists a unique
classical global solution to (2.2)-(2.3). Moreover it is given by the characteristic formula

u(t, x) = u0(x� ct) +

ˆ t

0
h(s, x� c(t� s)) ds.

Proof. We proceed again in two steps, but beginning this time with the uniqueness
part, as it has been treated already by the study of the homogeneous problem above.

Uniqueness: Consider u1, u2 two classical solutions to (2.2)-(2.3) on [0, T ] with initial
data u0. Then v := u1�u2 is, by linearity, a classical solution to (2.1) with zero initial
data. By Theorem 2.2, we deduce that v = 0 which concludes the proof.
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Existence: One way is to start from the formula in the statement and check that it
provides a classical solution: consider

u(t, x) = u0(x� ct) +

ˆ t

0
h(s, x� c(t� s)) ds.

This defines a C1(R+⇥R) function by composition and integration, which satisfies the
initial condition u(0, x) = u0(x). The partial derivatives are

@tu = �c u00(x� ct) + h(t, x)� c

ˆ t

0
(@xh)(s, x� c(t� s)) ds

@xu = u00(x� ct) +

ˆ t

0
(@xh)(s, x� c(t� s)) ds.

which proves that @tu+ c @xu = h and concludes the proof of existence. ⇤
Remark 2.6. The previous explicit formula can be interpreted as the sum of the

previous homogeneous formula (following backward the characteristic to find out the
value of the initial data at x� ct) plus the action of the source term along this portion
of the characteristic.

Remark 2.7. Let us now explain how to find the formula for the solution to (2.2)-
(2.3). The idea is apply the method of variation of the constant along characteristics.
In PDE this is callled Duhamel principle and it applies more generally along any semi-
group. Let us argue by necessary condition. Consider a classical solution u to (2.2)-
(2.3) and define '(t, y) = u(t, y + ct). Then this function ' is C1 by composition and
satisfies by chain-rule

@t'(t, y) = (@tu)(t, y + ct) + (@xu)(t, x+ ct) = h(t, y + ct).

Integrating along time, we get

'(t, y) = '(0, y) +

ˆ t

0
h(s, y + cs) ds

which means on u

u(t, y + ct) = u0(y) +

ˆ t

0
h(s, y + cs) ds

and by changing variable x = y + ct:

u(t, x) = u0(x� ct) +

ˆ t

0
h(s, x+ cs� ct) ds.

Hence we have solved both the existence and uniqueness problems mentionned in
the beginning of this chapter, in the case of C1 solutions. Let us now give a unified
statement (with or without source term, the case of no-source term being included in
f = 0) solving the third problem of regularity.

Theorem 2.8. Consider h 2 C1(R+⇥R) and u0 2 C1(R), and consider the classical
C1 solution u to (2.2)-(2.3) constructed above. Then if u0 2 Ck(R), k � 1 and f 2
Ck(R+ ⇥ R), then this unique solution is Ck(R+ ⇥ R).

Proof of Theorem 2.8. Exercise (use the explicit formulas.) ⇤
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2.2. Weak solutions. We introduce in this subsection notions of solutions weaker
than the previous classical solutions, in the sense that they are not regular enough so
that the derivatives appearing in the equation make sense for di↵erential calculus. This
has several motivations:

• A first motivation is the internal mathematical elegance and optimality of
the theory: the formula we have established so far on the solution do make
sense without assuming regularity on the solution; in fact they make sense for
instance in L1.

• A second more motivation is that for nonlinear transport equation a C1 regu-
larity is often “too much to ask for” as this regularity can break down in finite
time. We will see an example with the Burgers equations. This correspond to
important physical phenomena (shock waves) that we want to describe and we
have to develop a mathematical Cauchy theory that can capture them. Note
that a discontinuity in a mathematical model does not correspond to a dis-
continuity in the real phenomenon, where there will be some small viscosity or
other molecular e↵ects that would be become non-negligible and if one “zoom
in” on this “singularity”; a mathematical model is always an idealisation to
a large extent, however it does not that the presence of these singularities in
the solution is meaningless at all!

• A third motivation –that we will not have time to explore fully in this course–
is that the kinetic Vlasov transport equation can be rigorously proved to be
the limit of many-particle systems interacting through Newton laws, on the
basis of a Cauchy theory for weak (measure) solutions.

Definition 2.9 (Weak L1 solutions). Let u0 2 L1(R). The function u = u(t, x),
t 2 R+, x 2 R is a weak L1 solution to (2.1) if: (i) u 2 L1(R+ ⇥ R), and (ii)

8' 2 C1
c (R+ ⇥ R),

ˆ
R+

ˆ
R
u(t, x) [@t'+ c @x'] dt dx+

ˆ
R
u0(x)'(0, x) dx = 0.

(2.4)

Remarks 2.10. (1) Since C1
c (R+ ⇥R) contains in particular D(R⇤

+ ⇥R), the
property (7.1) implies the equation @tu+c @xu = 0 in the sense of distributions,
i.e. in the space D0(R⇤

+ ⇥ R). Be careful when you write this equation: this
is an equality between linear forms, not between functions since in general
the derivatives do not exist as functions (take for instance for u the heaviside
function on R). We will also say that u “satisfies the equation in the dual or
weak sense”.

(2) Note that one could define the notion of weak solutions in spaces larger than
L1: measure solutions, or even distribution solutions. Note also that the
initial data requires some minimal regularity on the time variable to make
sense, which does not seem to be included in the assumption u 2 L1(R+⇥R).
It turns out that the weak formulation (7.1) itself implies some continuity in
time (valued in a weak space like W�1,1(R) or D0(R)) by relating the first
order time derivative to the other derivatives.

(3) This definition could be extended to any time interval [0, T ], just like all this
section. We do not write it for the sake of simplicity.
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Exercise 46. Prove that the property (7.1) is equivalent to the same property where
one replaces ' 2 C1

c (R+ ⇥ R) by ' 2 C1
c (R+ ⇥ R) = D(R+ ⇥ R).

This first thing to check when one defines weak solutions is that they really extend
the already defined classical solutions, i.e. if classical and weak solutions do exist do
they coincide, and if weak solutions are regular are they classical?

Theorem 2.11. Let u0 2 C1(R)\L1(R). First if u is a classical solution to (2.1)
then u is also a weak solution to (2.1). Second, if u is a weak solution to (2.1) and
u 2 C1(R+ ⇥ R), then u is a classical solution.

Proof of Theorem 2.11. First let us consider a classical solution u and ' 2
C1(R+⇥R). Then from the explicit formula u(t, x) = u0(x�ct), we have u 2 L1(R+⇥
R), and from the PDE we get

'
�

@tu+ c @xu
�

= 0.

Integrating on R+ ⇥ R, we deduce by integration by parts

�
ˆ
R+

ˆ
R
u
�

@t'+ c @x'
�

dt dx�
ˆ
R
u(0, x)'(0, x) dx = 0

which shows (7.1) using that u(0, x) = u0(x), and proves that u is a weak solution.
Second assume that u is a weak solution with initial data u0, and with u 2 C1(R+⇥

R). We first consider the weak formulation (7.1) with any test function ' 2 C1
c (R⇤

+⇥R)
(support avoiding the initial time) and compute by integration by parts (since u is C1)

0 =

ˆ
R+

ˆ
R
u
�

@t'+ c @x'
�

dt dx = �
ˆ
R+

ˆ
R

�

@tu+ c @xu
�

' dt dx

which implies that @tu + c@xu = 0 on R⇤
+ ⇥ R. Finally we consider any test function

 2 C1
c (R) and then build a test function ' 2 C1

c (R+ ⇥ R) so that '(0, ·) =  . We
write

0 =

ˆ
R+

ˆ
R
u
�

@t'+ c @x'
�

dt dx+

ˆ
R
u0(x) (x) dx

=�
ˆ
R+

ˆ
R

�

@tu+ c @xu
�

' dt dx+

ˆ
R
(u0(x)� u(0, x)) (x) dx

=

ˆ
R
(u0(x)� u(0, x)) (x) dx

and we deduce that u0 = u(0, ·) on R, which concludes the proof that u is a classical
C1 solution. ⇤

Remark 2.12. To sum up, [strong] implies [weak], and [weak + regularity] implies
[strong].

Theorem 2.13. Let u0 2 L1, then the Cauchy problem (2.1) admits a unique global
L1 weak solution. This solution also satisfies u(t, x) = u0(x � ct) almost everywhere
in (t, x) 2 R+ ⇥ R.
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Proof. We proceed in two steps, distinguishing existence and uniqueness again.

Existence: The formula u(t, x) = u0(x� ct) defines an L1 function. Then we consider
' 2 C1

c (R+ ⇥ R) and compute

I :=

ˆ
R+

ˆ
R
u(t, x)

�

@t'+ c @x'
�

dt dx =

ˆ
R+

ˆ
R
u0(x� ct)

�

@t'+ c @x'
�

dt dx

which writes with the change of variable X = x� ct:

I =

ˆ
t2R+

ˆ
X2R

u0(X)
�

@t'(t,X + ct) + c @x'(t,X + ct)
�

dt dX

and we use the chain rule

@t
⇥

'(t,X + ct)
⇤

= @t'(t,X + ct) + c @x'(t,X + ct)

which yields

I =

ˆ
t2R+

ˆ
X2R

u0(X) @t
⇥

'(t,X + ct)
⇤

dt dX.

We finally perform an integration by parts in t (keeping X fixed)

I = �
ˆ
X2R

u0(X)'(0, X) dX

which proves (7.1) et concludes the proof of existence.

Uniqueness: Consider two weak L1 solutions u1 and u2 with the same initial data
u0 2 L1(R), and their di↵erence v := (u1�u2). The equation and its weak formulation
being linear, v is again a weak solution of (2.1), with zero initial data. We want to
prove v = 0 in L1(R+ ⇥ R), (i.e. almost everywhere on R+ ⇥ R). It is hence enough
to prove

(2.5) 8 2 C1
c (R+ ⇥ R),

ˆ
R+

ˆ
R
v(t, x) (t, x) dt dx = 0.

We first claim that to prove (3.9) it is enough to prove

For any  2 C1
c (R+ ⇥ R), there is ' 2 C1

c (R+ ⇥ R) so that

(2.6) @t'+ c @x' =  , t � 0, x 2 R.

Indeed, since v is a weak solution with zero initial data we have

8' 2 C1
c (R+ ⇥ R),

ˆ
R+

ˆ
R
v(t, x)

⇥

@t'+ c @x'
⇤

dt dx = 0

which implies (3.9) as soon as we have (3.10).
Let us now prove (3.10). We have solved in Theorem 2.5 the linear problem with

source term: there is a unique C1 solution given by

'(t, x) = '0(x� ct) +

ˆ t

0
 (s, x� c(t� s)) ds.
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What remains to be proved in order to solve (3.10) is that, by playing with the di↵erent
initial data '0 we can build a compactly supported solution. Let us define

(2.7) 8x 2 R, '0(x) := �
ˆ T

0
 (s, x+ cs) ds.

This is a C1 compactly supported initial data, and the associated solution to (3.9) is

'(t, x) ='0(x� ct) +

ˆ t

0
 (s, x� c(t� s)) ds

=�
ˆ T

0
 (s, x� ct+ cs) ds+

ˆ t

0
 (s, x� c(t� s)) ds

=

ˆ t

T
 (s, x� c(t� s)) ds.

We know that  has compact support, say included in [0, T ]⇥ [�R,R]. Then for t � T ,
the function ' vanishes since the integrand above vanishes. Second, for t 2 [0, T ], one
has |t � s| 2 [0, T ] since 0  t  s  T , and therefore '(t, x) vanishes as soon as
|x � c(t � s)| � R for all s, which is true as soon as |x| � R + c T . Finally we deduce
that ' has compact support in [0, T ]⇥ [�R�cT,R+cT ]. This concludes the proof. ⇤

Exercise 47. Generalise the previous results to the case x 2 Rd, c 2 Rd and

@tu(t, x) + c ·rxu(t, x) = 0.

This corresponds to di↵erent propagation speeds along the di↵erent coordinates of the
problem.

3. The linear scalar transport equation with variable coe�cients

3.1. The setting. Consider the following equation

(3.1)

(

@tu(t, x) + F(t, x) ·rxu(t, x) = 0, t 2 R, x 2 Rd

u(t = 0, x) = u0(x), x 2 Rd.

The propagation speeds F(t, x) 2 Rd can now depend on time and space and be di↵erent
in each coordinate.

We assume that u0 2 C1(Rd), and we assume on the vector field F that (a) F 2
C1(R⇥ Rd), and

(3.2) (b) 8 t � 0, x 2 R, |rxF(t, x)|  L

for some constant L > 0.

Remark 3.1. In the sequel, one can replace (exercise) the assumption (b) with

(b0) 8 t � 0, x 2 R, F(t, x)  L (1 + |x|).

Let us now explain how to build solutions to this PDE thanks to the ODE theory
and the method of characteristics.
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u(t, x)

t

x

u0(x� ct)

Figure 3.1. Picture of characteristics.

Definition 3.2. We call characteristics of the transport equation (3.1), the trajec-
tories (Zs,t), s, t 2 R, of the di↵erential system

(

@tZs,t(x) = F(t, Z(t, x)), t � 0,

Zs,s(x) = x 2 Rd.

We have from the ODE theory the following theorem

Theorem 3.3. Assuming that F satisfies (a)-(b), then these trajectories exist for
any s, t � 0, and moreover for any s, t � 0, the map

Zs,t : Rd ! Rd, x 7! Zs,t(x)

is a C1-di↵eomorphism (which means for instance that the trajectories do not cross).
In general there is no semigroup structure but one has always

8 t0, t1, t2 � 0, Zt1,t2 � Zt0,t1 = Zt0,t2 .

Proof. The proof follows from the Picard-Lindelöf theorem. The construction
of global trajectories Zs,t(x) is directly provided by the theorem, and then the fact
that Zs,t is C1 comes from the C1 dependency according to the initial data in Picard-
Lindelöf theorem, and finally the fact that it is a C1-di↵eomorphism comes from the
fact that Zt,s exists, is also C1, and satisfies Zt,s = Z�1

s,t . ⇤
Remark 3.4. Be careful that here there is only one variable x and the di↵erential

system has order 1. In case of kinetic transport equations, the associated characteristic
di↵erential system has order two and two variables x, v. In this case the fact that the
trajectories do not cross should be understood properly as “do not cross in the phase
space (x, v)”.

The heuristic in the picture suggests that u(t, x) = u0(Zt,s(x)), this is the object of
the next subsections.
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3.2. Well-posedness for classical solutions.

Definition 3.5. Let u0 2 C1(Rd) and F 2 C1(R ⇥ Rd) satisfying (a)-(b). A
classical solution to (3.1) is a function u 2 C1(R ⇥ Rd;R) which satisfies (3.1) in the
sense of an equality between continuous functions in R⇥ Rd.

Theorem 3.6. Let u0 2 C1(Rd) and F satisfies (a)-(b). Then there is a unique
global classical solution u 2 C1(R ⇥ Rd) to (3.1). Moreover it is given by the charac-
teristic method either in implicit form

(3.3) 8 t 2 R, 8x 2 Rd, u (t, Z0,t(x)) = u0(x).

or in explicit form

(3.4) 8 t 2 R, 8x 2 Rd, u(t, x) = u0 (Zt,0(x)) .

Remark 3.7. Observe on the picture that the solution is “constant along the char-
acteristic trajectories”. This characteristic method is hence of great importance both in
applications for solving many scalar transport PDEs, but also conceptually as it gives a
concrete bridge between the Cauchy theories for ODEs and PDEs, and shows in some
cases how to interpret a PDE as a continuum of ODEs.

Proof of Theorem 3.9. We proceed in two steps as before.

Uniqueness: Assume that u 2 C1 is a solution to (3.1) with initial data u0. From
the chain rule we get

d

dt
[u (t, Z0,t(x))] = (@tu) (t, Z0,t(x)) + (rxu) (t, Z0,t(x)) · @tZ0,t(x)

= (@tu+ F ·rxu) (t, Z0,t(x)) = 0,

which shows that
u (t, Z0,t(x)) = u (0, Z0,0(x)) = u0 (x)

since Z0,0(x) = x, and thus u satisfies (3.3). This proves uniqueness since it charac-
teristizes the solution and also shows (3.4) since Z0,t is a C1-di↵eomorphism for any
t 2 R.

Existence: Consider the application

8x 2 Rd, w(t, x) := u0 (Zt,0(x))

which is C1 in both variables by composition, and satisfies the initial condition since
Z0,0 = Id:

8x 2 Rd, w(0, x) = u0 (Z0,0(x)) = u0(x).

It also satisfies

8 t 2 R, x 2 Rd, w (t, Z0,t(x)) = u0 (Zt,0 � Z0,t(x)) = u0(x).

By di↵erentiating in time the last equation one gets (following the same chain rule
calculation as above):

8 t 2 R, x 2 Rd, (@tw + F ·rw) (t, Z0,t(x)) = 0.
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Defining x = Zt,0(y) for any y 2 Rd as t 2 R is fixed we deduce

8 t 2 R, y 2 Rd, (@tw + F ·rw) (t, y) = 0

which concludes the proof. ⇤
Remark 3.8. Another proof of existence would start directly from the explicit for-

mula to check that w satisfies the PDE. It would lead to more complicated calculations.
Let us sketch briefly how it goes: from

8x 2 Rd, Z0,t(Zt,0(x)) = x

one gets by di↵erentiating in t and x
(

(@tZ0,t) (Zt,0(x)) + @t (Zt,0(x))⇥ (JxZ0,t) (Zt,0(x)) = 0,

Jx (Zt,0(x))⇥ (JxZ0,t) (Zt,0(x)) = Id.

Then define w as w(t, x) := u0
�

Z�1
t (x)

�

and multiply the desired equation on w by the
invertible matrix (JxZ0,t)(Zt,0(x)):

[@tw(t, x) + F(t, x) ·rxw(t, x)]⇥ (JxZ0,t) (Zt,0(x))

= rxu0 (Zt,0(x)) · [@t (Zt,0(x)) + F(t, x) · Jx (Zt,0(x))]⇥ (JxZ0,t) (Zt,0(x))

= rxu0 (Zt,0(x)) · [Ft, x)� (@tZ0,t) (t, Zt,0(x))] .

Finally use that from the definition of the characteristic trajectories

(@tZ0,t) (t, Zt,0(x)) = F (t, Z0,t � Zt,0(x)) = F(t, x)

which implies that

[@tw(t, x) + F(t, x) ·rxw(t, x)]⇥ (JxZ0,t) (t, Zt,0(x)) = 0

and thus
@tw(t, x) + F(t, x) ·rxw(t, x) = 0.

Let us now extend our result on classical solutions to the case of a source term.
Consider the equation

(3.5)

(

@tu(t, x) + F(t, x) ·rxu(t, x) = h(t, x), t 2 R, x 2 Rd

u(t = 0, x) = u0(x), x 2 Rd

with h 2 C1(R+ ⇥ R).

Theorem 3.9. Let u0 2 C1(Rd) and F, h 2 C1(R⇥ Rd) with F satisfying (a)-(b).
Then there is a unique global solution u 2 C1(R ⇥ Rd) to the problem (3.5) and it is
given by

(3.6) 8 t 2 R, 8x 2 Rd, u (t, Z0,t(x)) = u0(x) +

ˆ t

0
h(s, Z0,s(x)) ds.

or in explicit form

(3.7) 8 t 2 R, 8x 2 Rd, u(t, x) = u0 (Zt,0(x)) +

ˆ t

0
h(s, Zt,s(x)) ds.



114 4. HYPERBOLICITY: SCALAR TRANSPORT EQUATIONS, WAVE EQUATIONS

Proof. The proof is based on the calculation

d

dt
[u (t, Z0,t(x))] = h(t, Z0,t(x))

when u satisfies the equation. The rest of the proof is similar to the case of constant
coe�cients. ⇤

3.3. Well-posedness for weak solutions. We restrict in this subsection to the
case of a divergence free vector field F , i.e. we make the further assumption

(c) 8 t � 0, x 2 Rd, rx · F(t, x) = 0.

Definition 3.10. Let u0 2 L1(Rd) and F 2 C1(R ⇥ Rd) satisfying (a)-(b). A
weak L1 solution to (3.1) is a function u 2 L1(R ⇥ Rd;R) which satisfies the weak
formulation

8' 2 C1
c (R+ ⇥ R),

ˆ
R+

ˆ
Rd

u(t, x) [@t'+ F ·rx'] dt dx+

ˆ
Rd

u0(x)'(0, x) dx = 0.

(3.8)

As before we first check the consistence with previous classical solutions:

Theorem 3.11. Let u0 2 C1(R) \ L1(R) and F satisfies (a)-(b)-(c). First if u is
a classical solution to (3.1) then u is also a weak solution to (3.1). Second, if u is a
weak solution to (3.1) and u 2 C1(R+ ⇥ R), then u is a classical solution to (3.1).

Proof of Theorem 3.11. First let us consider a classical solution u and ' 2
C1(R+⇥R). Then from the explicit formula u(t, x) = u0(Zt,0(x)), we have u 2 L1(R+⇥
Rd), and from the PDE we get

'
�

@tu+ F ·rxu
�

= 0.

Integrating on R+ ⇥ Rd, we deduce by integration by parts

�
ˆ
R+

ˆ
Rd

u
�

@t'+F ·rx'
�

dt dx�
ˆ
R+

ˆ
Rd

u'(rx ·F) dt dx�
ˆ
Rd

u(0, x)'(0, x) dx = 0

which shows (3.8) using that u(0, x) = u0(x) and rx · F = 0, and proves that u is a
weak solution.

Second assume that u is a weak solution with initial data u0, and with u 2 C1(R+⇥
R). We first consider the weak formulation (3.8) with any test function ' 2 C1

c (R⇤
+⇥R)

(support avoiding the initial time) and compute by integration by parts (since u is C1)

0 =

ˆ
R+

ˆ
Rd

u
�

@t'+ F ·rx'
�

dt dx = �
ˆ
R+

ˆ
Rd

�

@tu+ F ·rxu
�

' dt dx

using again rx · F = 0, which implies that @tu + F ·rxu = 0 on R⇤
+ ⇥ R. Finally we

consider any test function  2 C1
c (R) and then build a test function ' 2 C1

c (R+ ⇥ R)
so that '(0, ·) =  . We write

0 =

ˆ
R+

ˆ
Rd

u
�

@t'+ F ·rx'
�

dt dx+

ˆ
Rd

u0(x) (x) dx

=�
ˆ
R+

ˆ
Rd

�

@tu+ F ·rxu
�

' dt dx+

ˆ
Rd

(u0(x)� u(0, x)) (x) dx
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=

ˆ
Rd

(u0(x)� u(0, x)) (x) dx

and we deduce that u0 = u(0, ·) on Rd, which concludes the proof that u is a classical
C1 solution. ⇤

Theorem 3.12. Let u0 2 L1(Rd) and F satisfies (a)-(b)-(c). Then there is a
unique global weak solution u 2 L1(R⇥Rd) to (3.1). Moreover it is given again by the
characteristic method either in implicit form (3.3) or in explicit form (3.4).

Proof of Theorem 3.12. We proceed in two steps.

Existence: The formula u(t, x) = u0(Zt,0(x)) defines an L1 function. Then we consider
' 2 C1

c (R+ ⇥ R) and compute

I :=

ˆ
R+

ˆ
Rd

u(t, x)
�

@t'+ F ·rx'
�

dt dx =

ˆ
R+

ˆ
R
u0(Zt,0(x))

�

@t'+ F ·rx'
�

dt dx

which writes with the change of variable X = Zt,0(x):

I =

ˆ
R+

ˆ
R
u0(X)

�

@t'(t, Z0,t(X)) + F(t, Z0,t(X)) · @x'(t, Z0,t(X))
�

dt dX

and we use the chain rule

d

dt

⇥

'(t, Z0,t(X))
⇤

= @t'(t, Z0,t(X)) + F ·rx'(t, Z0,t(X))

which yields

I =

ˆ
R+

ˆ
R
u0(X)

d

dt

⇥

'(t, Z0,t(X))
⇤

dt dX.

We finally perform an integration by parts in t (keeping X fixed)

I = �
ˆ
X2R

u0(X)'(0, X) dX

which proves (7.1) et concludes the proof of existence.

Uniqueness: Consider two weak L1 solutions u1 and u2 with the same initial data
u0 2 L1(R), and their di↵erence v := (u1�u2). The equation and its weak formulation
being linear, v is again a weak solution of (2.1), with zero initial data. We want to
prove v = 0 in L1(R+ ⇥Rd), (i.e. almost everywhere on R+ ⇥Rd). It is hence enough
to prove

(3.9) 8 2 C1
c (R+ ⇥ Rd),

ˆ
R+

ˆ
Rd

v(t, x) (t, x) dt dx = 0.

We first claim that to prove (3.9) it is enough to prove

For any  2 C1
c (R+ ⇥ Rd), there is ' 2 C1

c (R+ ⇥ Rd) so that

(3.10) @t'+ F ·rx' =  , t � 0, x 2 Rd.
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Indeed, since v is a weak solution with zero initial data we have

8' 2 C1
c (R+ ⇥ Rd),

ˆ
R+

ˆ
Rd

v(t, x)
⇥

@t'+ c @x'
⇤

dt dx = 0

which implies (3.9) as soon as we have (3.10).
Let us now prove (3.10). We have solved in Theorem 2.5 the linear problem with

source term: there is a unique C1 solution given by

'(t, x) = '0(Zt,0(x)) +

ˆ t

0
 (s, Zt,s(x)) ds.

What remains to be proved in order to solve (3.10) is that, by playing with the di↵erent
initial data '0, we can build a compactly supported solution. Let us define

(3.11) 8x 2 R, '0(x) := �
ˆ T

0
 (s, Z0,s(x)) ds.

This is a C1 compactly supported initial data, and the associated solution to (3.9) is

'(t, x) ='0(Zt,0(x)) +

ˆ t

0
 (s, Zt,s(x)) ds

=�
ˆ T

0
 (s, Z0,s � Zt,0(x)) ds+

ˆ t

0
 (s, Zt,s(x)) ds

=

ˆ t

T
 (s, Zt,s(x)) ds.

We know that  has compact support, say included in [0, T ]⇥ [�R,R]. Then for t � T ,
the function ' vanishes since the integrand above vanishes. Second, for t 2 [0, T ], one
has |t � s| 2 [0, T ] since 0  t  s  T , and therefore '(t, x) vanishes as soon as
|Zt,s(x)| � R for all s, which is true as soon as |x| � R + LT . Finally we deduce that
' has compact support in [0, T ]⇥ [�R� LT,R+ LT ]. This concludes the proof. ⇤

Remark 3.13. One could prove the existence and uniqueness of weak solutions with
a source term as well with the same methods.

4. Nonlinear scalar monodimensional transport equations

Let us consider the simpler nonlinear first-order PDE, where the nonlinearity only
depends on the solution itself and not on time or space:

(4.1)

(

@tu+ @x [f(u)] = 0, t � 0, x 2 R
u(0, x) = u0(x), x 2 R,

where f is called the flux of the transport equation. When both u and f are C1, the
equation writes also

(4.2) @tu+ f 0(u) @xu = 0

c(t, x) = f 0(u(t, x)) corresponds to the speed of propagation as seen before. However
this speed now depends on the value of the solution itself u(t, x) at the time and point
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considered. Unlike the previous linear transport equations that were completely under-
stood through the ODE theory, we shall encounter a phenomenon genuinely specific to
transport PDEs.

4.1. Classical solutions and characteristics. As before we first define the no-
tion of solutions.

Definition 4.1. Consider f 2 C2(R) with f 0 2 L1(R), and u0 2 C1(R) with
u0, u00 2 L1(R). We say that u = u(t, x), t 2 [0, T ], x 2 R, is a classical solution to
(4.1) on [0, T ], with initial data u0, if

• u is C1([0, T ]⇥ R) with u, @xu 2 L1(R);
• u satisfies (4.1) as an equality between continuous functions.

We now consider a solution a priori given, and apply the previous notion of char-
acteristics seen for scalar transport equations with variable coe�cients, to the case of
c(t, x) = f 0(u(t, x)):

Definition 4.2. We call characteristics of the transport equation (4.1), the trajec-
tories (Zs,t), 0  s, t < +1, of the di↵erential system:

(

@Zs,t(x) = c(t, Zs,t(x)) = f 0 (u(t, Zs,t(x)) , s, t � 0, x 2 Rd,

Zs,s(x) = x, x 2 Rd.

Proposition 4.3. Under the previous assumptions on f and the solution u in the
definition of classical solutions, the characteristics maps above exist, are unique and
C1 on [0, T ], moreover for any s, t 2 [0, T ],

Zs,t : Rd ! Rd, x 7! Zs,t(x)

is a C1-di↵eomorphism.

Proof. The proof is similar as for variable coe�cients (application of Picard-
Lindelöf). ⇤

Let us now reason heuristically on our a priori solution (or to be precise, we shall
reason by necessary conditions). The key remark to come is at the origin of the existence
and uniqueness theorem, but also of the limits of this construction of classical solutions.

As before the solution u is constant along the characteristic trajectories (except
that now these trajectories depend on the solution itself)

d

dt

⇥

u(t, Z0,t(x))
⇤

= (@tu) (t, Z0,t(x)) + @tZ0,t(y) (@xu) (t, Z0,t(x))

= (@tu) (t, Z0,t(x)) + f 0(u(t, Z0,t(x))) (@xu) (t, Z0,t(x)) = 0

since u satisfies the equation at the point (t, Z0,t(x)). We deduce that

8 t 2 [0, T ], x 2 R, u(t, Z0,t(x)) = u(0, Z0,0(x)) = u(0, x) = u0(x).

Coming back to the di↵erential equation defining the characteristic trajectories, we
have for x 2 R fixed:

8 t � 0, @tZ0,t(x) = f 0(u(t, Z0,t(x)) = f 0(u0(x))
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Figure 4.1. Picture of characteristics in the cases f 0 � u0 increasing
and then decreasing.

which implies that the characteristics are in fact lines: Z0,t(x) = x+ tf 0(u0(x)) (their
time derivative is constant). However, unlike the case of a constant coe�cient in sec-
tion 2, the slope of the line varies according to x, the starting point of the characteristic,
along with the function f 0 � u0.

From the previous study of the linear transport equation with variable coe�cient,
we expect the solution to be given by u(t, x) = u0(Zt,0(x)). However, it is clear from
the picture that in the second case there will be a problem at time T⇤: two potentially
di↵erent values of the initial data should become equal if this characteristic formula
would remain true. We shall now characteristize the first time when characteristic lines
cross, and construct classical solutions until this time.

4.2. Classical solution for short times. The main theorem is:

Theorem 4.4. Consider f 2 C2(R) with f 0 2 L1(R), and u0 2 C1(R) with u0, u00 2
L1(R), and define T⇤ 2 R+ ⇤ [{+1} by (1) T⇤ := +1 if f 0 � u0 is non-decreasing, or
else (2)

(4.3) T⇤ := �


min
x2R

�

f 0 � u0
�0
��1

.
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Then there exists a unique classical solution u to (4.1) with initial data u0 sur
[0, T⇤), i.e. on any interval [0, T ] for 0 < T < T⇤.

Remarks 4.5. (1) The time T⇤ is precisely the first time when characteristic
lines cross. Indeed let us consider some time t when such crossing occurs: one
has x0 < x1 so that

t+ (f 0 � u0)(x0) = t+ (f 0 � u0)(x1)
and thus

t = �


(f 0 � u0)(x0)� (f 0 � u0)(x1)
x0 � x1

��1

.

By the mean value theorem we deduce that

t = �
⇥

(f 0 � u0)0(x2)
⇤�1

for some x2 2 [x0, x1], and thus t � T⇤. On the other hand, if t > T⇤, then
x 7! Z0,t(x) is not monotonic (see below), and thus not injective, and there
exist x0 < x1 so that Z0,t(x0) = Z0,t(x1), which corresponds to a crossing.

(2) When applied to the Burgers equation, we have f 0(x) = x and the critical time
is T⇤ = +1 if u0 is non-decreasing, and else

T⇤ = �


min
x2R

u00

��1

.

Proof. We separate existence and uniqueness as before.

Uniqueness: Consider a classical solution u on [0, T ] with 0 < T < T⇤ and initial data
u0. From the previous proposition we can define (in a unique manner) the characteristic
maps x 7! Z0,t(x) for any t 2 [0, T ] and x 2 R, which are C1-di↵eomorphisms. We
then compute

d

dt

⇥

u(t, Z0,t(x))
⇤

= 0 =) u (t, Z0,t(x)) = u0(x)

and thus u(t, x) = u0 (Zt,0(x)) (explicit characteristic formula). Coming back to the
characteristics ODEs we get

@tZ0,t(x) = f 0(u(t, Z0,t(x))) = f 0 (u (t, Z0,t(x))) = f 0 (u0(x))

and therefore

(4.4) Z0,t(x) = x+ tf 0 (u0(x)) .

Let us check now (even if it predicted by Picard-Lindelöf) that these maps are C1-
di↵eomorphisms, as this will explain the definition of T⇤. This reduces to verify the
monotonicity:

8 t 2 [0, T ], Z 0
0,t(x) = 1 + t

�

f 0 � u0
�0
(x) � 1 + t

h

min
y2R

�

f 0 � u0
�0
(y)
i

� 1� t

T⇤
> 0

which is uniformly positive on R. Note that the case T⇤ = +1 is included as a
particular case of the previous formula. Note also the critical role played by T⇤ when it
is finite. The explicit characteristic formula, together with (4.4) and the fact that Z0,t

is a C1-di↵eomorphism for t 2 [0, T ], characterizes entirely the solution, and proves
uniqueness.
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Existence: From the previous discussion, it is natural to define a candidate solution w
on [0, T ] as

w(t, x) = u0 (Zt,0(x))

together with the formulas

Z0,t(x) = x+ tf 0(u0(x)).

This definition makes sense: we can invert Z0,t from the calculation we have made
above to check that it is a di↵eomorphism. The function w is C1([0, T ] ⇥ R) and by
chain-rule

@xw(t, x) =
u0 (Zt,0(x))

Z 0
0,t (Zt,0(x))

and thus

|@xw(t, x)| 
ku0k

1� (t/T⇤)
which proves that @xw 2 L1(R). We also have the initial condition w(0, x) = u0(x)
since Z0,0(x) = x.

By inverting the characteristic map we get w(t, Z0,t(x)) = u0(x) and by di↵erenti-
ating in time:

0 =
d

dt
[w (t, Z0,t(x))] = (@tw) (t, Z0,t(x)) + (@tZ0,t(x)) (@xw) (t, Z0,t) .

Since @tZ0,t(x) = f 0(u0(x)), we get

0 =
d

dt
[w (t, Z0,t))] = (@tw) (t, Z0,t)(x)) + f 0 (u0(x)) (@xw) (t, Z0,t(x)) .

By using again the characteristic formula, we have f 0(u0(x)) = f 0(w(t, Z0,t(x))), and
therefore

8 t 2 [0, T ], x 2 R, (@tw) (t, Z0,t(x)) + f 0 (w (t, Z0,t(x))) (@xw) (t, Z0,t(x)) = 0.

Hence the equation is satisfied for any t 2 [0, T ], and y = Z0,t(x), x 2 R. Since Z0,t is
bijective, this concludes the proof. ⇤

Remark 4.6. Let us observe a fundamental property of transport equation (and in
fact more generally hyperbolic equations): finite speed of propagation of information: if
u0 has compact support included in [�B,B], then the solution u(t, ·) at time t has also
compact support included



�B + t min
x2R

f 0(u0(x)), B + t max
x2R

f 0(u0(x))
�

.

This is the notion of cone of dependency. More generally, the values of the solution
u(t, ·) at time t on some compact interval [�A,A] only depends on the values of the
initial data on the compact interval



�A+ t min
x2R

f 0(u0(x)), A+ t max
x2R

f 0(u0(x))
�

.

This is the notion of cone de influence. The proofs are let as an exercise.
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4.3. Non-existence of global classical solutions. Let us now study what hap-
pens at the critical time T⇤, and prove that derivatives are diverging, so that it is not
possible to extend further C1 classical solutions.

Theorem 4.7. Consider f 2 C2(R) with f 0 2 L1(R), u0 2 C1(R) with u0, u00 2
L1(R), and define T⇤ 2 R+ ⇤[{+1} as before. If T⇤ < +1, then there is no classical
solution to (4.1) with initial data u0 on a time interval [0, T ] with T > T⇤.

Proof of Theorem 4.7. Let us give two proofs, each one interesting in its own
right for the mechanism of formation of shocks. We assume by contradiction the ex-
istence of a classical solution u on [0, T ] with T > T⇤ and initial data u0. From the
uniqueness of classical solutions on [0, T⇤), it coincides with the solution constructed
above by the characteristic method on [0, T⇤).

First poof: For 0 < t < T⇤ we have

u(t, x) = u0(Zt,0(x))

and compute

@xu(t, x) = u00(Zt,0(x))Z
0
t,0(x) =

u00(Zt,0(x))

Z 0
0,t(Zt,0(x))

=
u00(Zt,0(x))

1 + t (f 0(u0))0(Zt,0(x))
.

From the definition of T⇤, there is x(t) 2 R, t ! T⇤ so that

1 + t(f 0(u0))0(Zt,0(x(t))) ! 0+, t ! T⇤
which writes

(f 0(u0))0(Zt,0(x(t))) = f 00(u0(Zt,0(x(t))))u
0
0(Zt,0(x(t))) ! � 1

T⇤
.

The fact that u0 2 L1 and f 00 2 C0 imply

8 t < T⇤,
�

�f 00(u0(Zt,0(x(t))))
�

�  M < +1
and thus

�

�u00(Zt,0(x(t)))
�

� � 1

2M T⇤
> 0.

We deduce that
�

�@xu(t, x(t))
�

� � 1

2M T⇤
1

�

�1 + t (f 0(u0))0(Zt,0(x(t)))
�

�

! +1 as t ! T⇤.

This contradicts @xu 2 L1 and concludes the proof.

Second proof (and precise blow-up behavior): We di↵erentiate in x the equation to
write an evolution equation on @xu on [0, T⇤):

@t(@xu) + f 0(u) @x(@xu) + f 00(u) (@xu)2 = 0.

The first two terms have the same structure of the original transport equation, and the
last term can be seen as a source term, leading (by Duhamel principle) to the following
formula:

d

dt
[@xu(t, Z0,t(x))] =

⇥

@t(@xu) + f 0(u) @x(@xu)
⇤

(t,Z0,t(x))

= �f 00(u(t, Z0,t(x))) (@xu(t, Z0,t(x)))
2.
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Since u is constant along characteristic trajectories, we have

d

dt
[@xu(t, Z0,t(x))] = �f 00(u0(x)) (@xu(t, Z0,t(x)))

2.

If we define

w(t, x) := f 00(u0(x)) @xu(t, Z0,t(x))

we thus get the following closed on w:

@tw(t, x) = �w(t, x)2.

This is continuum of ODEs in time, indexed by the space variable x. Solving explicitely
this equation yields

w(t, x) =
1

t� T (x)
with T (x) := � 1

w(0, x)
= � 1

(f 0 � u0)0(x)
.

(One excludes the case w(0, x) = 0 which yields the zero solution.)
We deduce that if w(0, x) � 0, then the solution is global (T (x)  0), with moreover

the decay estimate

8 t � 1, |w(t, x)|  1

t
meaning on the original solution

8 t � 1, |@xu(t, Z0,t(x))| 
1

|f 00(u0(x))| t
.

On the other hand if w(0, x) < 0, then T (x) > 0 and w(t, x) ! +1 as t ! T (x).
Finally observe that from the definitions of T (x) and T⇤ we have

T⇤ = inf
x2R, T (x)>0

T (x).

This concludes the proof. ⇤

Remark 4.8. The second proof shows that the mechanism for “blow-up” (i.e. for-
mation of singularity and blow-up of the first derivative) is at the same time more
complex than for ODEs as it involves the nonlinear transport evolution of two di↵erent
values at the same point, but has an underlying “ODE blow-up mechanism” for the
amplitude of this first derivative, when properly reframed along the characteristics.

Let us now prove that when f is nonlinear there is generically no global classical
solutions.

Theorem 4.9. Consider f 2 C2(R) with f 0 bounded and not constant, then there
exists u0 2 C1(R) with u0, u00 2 L1(R) so that the unique classical solution (4.1) with
initial data u0 breaks down in finite time as described above (T⇤ < +1).

Proof of Theorem 4.9. It is enough to construct u0 2 C1 with compact support
so that f 0(u0) is not non-decreasing and then apply the previous theorem for this
choice of initial data (for which T⇤ < +1). The construction of such a u0 is let as an
exercise. ⇤
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4.4. Weak L1 and entropic solutions. The previous discussion motivates the
introduction of a notion of weak solutions, since classical solutions are not enough.

Definition 4.10. Consider f 2 C1(R) with f 2 L1(R) and u0 2 L1(R), we say
that u = u(t, x), t � 0, x 2 R is a weak solution to (4.1) on [0, T ] if u 2 L1([0, T ]⇥R)
and

8' 2 C1
c ([0, T )⇥ R),

ˆ T

0

ˆ
R

�

u @t'+ f(u) @x'
�

dt dx+

ˆ
R
'(0, x)u0(x) dx = 0.

(4.5)

Remarks 4.11. (1) This is the same definition as in the linear case, only
paying attention to the nonlinear term f(u).

(2) One can prove that the definition is equivalent to the same statement replacing
the space of test functions by C1

c (R⇤
+ ⇥R). This shows that this weak formu-

lation implies the equation @tu + @xf(u) = 0 sur [0, T ] ⇥ R in distributional
sense.

We leave as an exercise the tedious but necessary step of checking the consistency
of this definition with of classical solutions.

Proposition 4.12. Consider f 2 C2(R) with f 0 2 L1(R) and u0 2 C1(R) with
u0, u00 2 L1(R). Then (1) the classical solution u(t, x) on [0, T ] (if it exists) is also a
weak solution, (2) any weak solution u(t, x) on [0, T ] that is also C1([0, T ] ⇥ R) is a
classical solution.

Observe that the same result can be done for the more general equation @tu+@xq = 0
on the pair (u, q) in an open set U ⇢ [0, T ]⇥R. The weak formulation is defined simply
as u, q 2 L1(U) with

8' 2 C1
c (U),

ˆ
U
(u@t'+ q@x') dt dx = 0,

and we have (1) if a classical solution (u, q) exists on U then it is also a weak solution,
(2) any weak solution (u, q) on U that is also C1(U) is a classical solution.

Let us see that the definition of weak solution is already su�cient to derive an im-
portant requirement on any isolated curve of discontinuity, called the Rankine-Hugoniot
condition.

Proposition 4.13. Let us consider a pair (u, q) of functions, piecewise continuous
in the domain U , whose line of discontinuity lies along a regular curve �, which sep-
arates U into two connected components U±. We assume that (u, q) is of class C1 in
U� and in U+, where it satisfies @tu+@xq = 0. Finally, we denote by u+(x, t) the limit
of u(y, s) when (y, s) tends to (x, t) 2 � and stays in U+. In the same way we define
q+(x, t) and u�(x, t) and q�(x, t) along �, and we write [h](x, t) = h+(x, t)� h�(x, t),
the jump across � of any piecewise continuous function h.

Under the above hypothese, the pair (u, q) satisfy the equation in the distributional
sense in U if and only if

(1) On the one hand, u and q satisfy the equation pointwise in U+ and U�.
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(2) On the other hand, the jump condition

8 (t, x) 2 �, [u](t, x)nt(t, x) + [q](t, x)nx(t, x) = 0

is satisfied along �, where n = (nt, nx) is a unit normal vector to � in (x, t).

Proof. Let (u, q) be a solution of the weak formulation on U and with the regu-
larity assumptions. First of all choosing test functions whose support is in U�, we see
that (u, q) is a weak solution in U�. In the same way we have the result for U+. By
the weak-strong uniqueness result above this implies that (u, q) satisfy the equation in
the classical sense in U±.

We then calculate with the Green theorem:

0 =

ˆ
U
(u@t'+ q@x') dt dx

=

ˆ
U+

(u@t'+ q@x') dt dx+

ˆ
U�

(u@t'+ q@x') dt dx

= �
ˆ
U+

' (@tu+ @xq) dt dx�
ˆ
U�

' (@tu+ @xq) dt dx

ˆ
@U+

'
�

u+n
+
t + q+n

+
x

�

ds+

ˆ
@U�

'
�

u�n�
t + q�n�

x

�

ds.

We use that the two first term are zeros from the previous step, and that n+ = �n�,
to get ˆ

�
([u]nt + [q]nx) ds = 0

which implies [u]nt + [q]nx = 0 on � as it is true for any ' 2 C1
c (U).

The other implication is proved similarly. ⇤
When q = f(u), the jump condition is called the RankineHugoniot condition. If

the curve of discontinuity writes as

� = {(X(t), t) : t 2 I}
then it takes the form

[f(u)] = X 0(t)[u].
By the mean value theorem this implies that

X 0(t) = c(ū(t)) = f 0(ū(t)) where ū(t) 2 [u�(t,X(t)), u+(t,X(t)]

so the slope of the curve lies between the left and right speeds of propagation. When the
amplitude of discontinuity approaches zero, this slope approaches the exact propagation
speed of the characteristic trajectory at the point.

The simplest discontinuous solutions are of the form u = u�, x < �t, u = u+,
x > �t, where � = (f(u+) � f(u�))/(u+ � u�). Indeed, u satisfies the equation
trivially outside of the straight line x = �t. For Burgers’ equation f(u) = u2/2, the
speed of propagation of the discontinuities is X 0(t) = (u+ + u�)/2.

This result is actually enough to entirely characterize the structure of weak solutions
that are piecewise constant. And this allows us to build easily such weak solutions and
show that uniqueness does not hold. Consider the Burgers equation with zero initial
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condition u0 = 0. We have then of course the trivial global weak solution u = 0.
Consider then the following function for any parameter p > 0

u(t, x) =

8

>

>

>

<

>

>

>

:

0, x < �pt

�2p, �pt < x < 0

2p, 0 < x < pt

0, pt < x.

On can check that the equation is satisfied in the classical sense in each four region,
and that the Rankine-Hugoniot are satisfied at the interfaces. This proves that u is a
weak solution. We have therefore built an infinite number of solutions. The Riemann
problem, that is the Cauchy problem starting from a two-values discontinuous initial
condition will be studied in more details in the example classes.

Hence we see that the definition of L1 weak solutions lead to infinitely many
solutions. The correct definition adds a further condition, inspired from the second
principle of thermodynamics, asking that informations flows forward in time, or here
more precisely that characteristics enter the shocks as time moves forward, and never
comes out out of the shocks.

Definition 4.14. Consider f 2 C1(R) \ L1(R) et u0 2 L1(R). We say that
u = u(t, x), t � 0, x 2 R is an entropic solution to (4.1) on [0, T ), T 2 R+ [ {+1}, if
u 2 L1(R+ ⇥ R) and

8' 2 C1
c ([0, T )⇥ R;R+), ⌘ 2 C1(R;R) convex, � s.t. �0 = f 0⌘0,

(4.6)

ˆ T

0

ˆ
R

�

⌘(u)@t'+ �(u)@x'
�

dt dx+

ˆ
R
'(0, x)⌘(u0(x)) dx � 0.

Remark 4.15. Pay attention to the fact that the test functions are assumed to be
non-negative here.

We first check the consistency as before (the proof is left as an exercise).

Proposition 4.16. Any entropic solution is a weak solution. Any classical solution
is an entropic solution. Any C1 entropic solution is a classical solution.

Another important consistency checking is that the entropic conditions follow from
the vanishing viscosity approximation:

Exercise 48. Consider the equation

@tu+ @xf(u) = "@2xxu

with initial data u0 2 C1(R) \ L1(R). One can show that this PDE admits a unique
global solution u" 2 C1(R+ ⇥ R) \ L1(R+ ⇥ R). Prove that

(1) if u" ! u almost everywhere then u is a weak solution to the transport equation
@tu+ @xf(u) = 0 with initial condition u0;

(2) it is moreover an entropic solution.

Hence the inequalities with the entropic-flux pairs in the definition of entropic solution
can be understood as the time-arrow information that should be retained from the mi-
croscopic dissipative mechanisms that are neglected (other dissipative approximations
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would give the same results). They have the e↵ect to prevent characteristics getting out
from shocks (discontinuity curves).

We end up with an important and beautiful theorem. We shall prove it in dimension
1 but it remains true in higher dimensions. However it does not apply to systems of
transport equations, which are much less well understood.

Theorem 4.17 (Kružkov, 1970). Consider f 2 C1(R) and u0 2 L1(R). Then
there exists a unique entropic solution to (4.1) with initial data u0. This solution u
moreover satisfies u 2 C(R+, L1

loc(R)) and kukL1(R+⇥R) = ku0kL1(R).

Remark 4.18. Observe that this unique entropic solution can no more be deter-
mined simply by computing the characteristic curves. We have to leave the pure La-
grangian approach and go back to a (more modern) energy method.

Proof. We shall admit here the existence part, which can be obtained by approx-
imation methods. We shall prove the uniqueness part, in the form of a powerful and
enlighting contraction inequality.

Consider for any k 2 R the function ⌘(u) = |u�k| which is convex, with associated
flux �(u) = (f(u)� f(k))sgn(u� k). Applying the definition of entropic solutions with
this pair entropy-flux gives the following inequalityˆ

R+

ˆ
R
(@t'|u� k|+ @x'(f(u)� f(k))sgn(u� k)) dt dx+

ˆ
|u0 � k|'(0, x) dx � 0.

We consider now two entropic solutions u, v and a test function �(t, x, s, y) � 0
smooth and compactly supported in ([0, T ) ⇥ R)2, and apply this previous inequality
first on u with k = v(s, y) and then on v with k = u(t, x) (this is the doubling of
variables method) and then integrate in the remaining variables and sum these two
inequalities. We obtain

0 
ˆ T

0

ˆ T

0

ˆ
R

ˆ
R
|u(t, x)� v(s, y)|(@t�+ @s�) dt ds dx dy

+

ˆ T

0

ˆ T

0

ˆ
R

ˆ
R
sgn(u(t, x)� v(s, y))[f(u(t, x))� f(v(s, y))](@x�+ @y�) dt ds dx dy

+

ˆ T

0

ˆ
R

ˆ
R
|u0(x)� v(s, y)|�(0, x, s, y) ds dx dy

+

ˆ T

0

ˆ
R

ˆ
R
|u(t, x)� v0(y)|�(t, x, 0, y) dt dx dy.

We choose the test function as

�(t, x, s, y) := '(t, x)�"(t� s, x� y), �"(⌧, z) := "�2�
⇣⌧

"
,
z

"

⌘

, �(⌧, z) := ⌘(⌧)✓(z)

with ⌘ � 0 smooth with mass one and support in [�2,�1] and ✓ � 0 smooth with mass
one and compact support. Observe that

@t�+ @s� = (@t')�", @x�+ @y� = (@x')�".
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We then pass to the limit "! 0 in the previous integrals, and claim thatˆ T

0

ˆ T

0

ˆ
R

ˆ
R
|u(t, x)� v(s, y)|(@t')�" dt ds dx dy ���!

"!0

ˆ T

0

ˆ
R
|u(t, x)� v(t, x)|@t' dt dx

ˆ T

0

ˆ T

0

ˆ
R

ˆ
R
sgn(u(t, x)� v(s, y))[f(u(t, x))� f(v(s, y))](@x')�" dt ds dx dy ���!

"!0ˆ T

0

ˆ
R
sgn(u(t, x)� v(t, x))[f(u(t, x))� f(v(t, x))]@x' dt dx

ˆ T

0

ˆ
R

ˆ
R
|u0(x)� v(s, y)|'(0, x)�"(�s, x� y) ds dx dy ���!

"!0

ˆ
R
|u0(x)� v0(x)|'(0, x) dx

ˆ T

0

ˆ
R

ˆ
R
|u(t, x)� v0(y)|'(t, x)�"(t, x� y) ds dx dy = 0.

The last term is zero for all " because of the support condition on ⌘. Let us prove for
instance the first limit. We write (using the mass condition on �"):ˆ T

0

ˆ
R
|u(t, x)� v(t, x)|@t' dt dx =

ˆ T

0

ˆ T

0

ˆ
R

ˆ
R
|u(t, x)� v(t, x)|@t'�" dt ds dx dy

and therefore the claimed convergence reduces (by triangular inequality) to prove that

I" :=

ˆ T

0

ˆ T

0

ˆ
R

ˆ
R
|v(s, y)� v(t, x)|@t'�" dt ds dx dy ���!

"!0
0.

By change of variable this latter integral writes

I" =

ˆ T

0

ˆ
...

ˆ
R

ˆ
R
|v(t+ "⌧, x+ "z)� v(t, x)|@t'(t, x)�(⌧, z) dt d⌧ dx dz.

From the compact support and the continuity of v, we deduce by the dominated con-
vergence theorem that I" ! 0.

Exercise 49. Prove that the convergence of the other terms can be treated similarly.

We therefore deduce that for all 0  ' 2 C1
cˆ T

0

ˆ
R
|u(t, x)� v(t, x)|@t' dt dx

+

ˆ T

0

ˆ
R
sgn(u(t, x)� v(t, x))[f(u(t, x))� f(v(t, x))]@x' dt dx

+

ˆ
R
|u0(x)� v0(x)|'(0, x) dx � 0.

We shall now perform an energy estimate along the cone of dependency, which
is a fundamental idea for hyperbolic equations. Consider two solutions u, v 2 L1,
[a, b] ⇢ R (say w.l.o.g �a = b > 0) and s 2 (0, T ) and M = sup[�C,C] |f 0| with C =
max(kuk1, kvk1) the maximal speed of wave propagation. Consider the trapezium

B := {t 2 [0, s], a�M(t� s) < x < a+M(t� s)} .
Consider ✓ = ✓(r) � 0 a smooth function on R+ so that ✓ = 1 on [0, b] and ✓ = 0

oustide [0, b + "], and 0  � 2 C1
c ([0, T )) so that so that �(0) = 1 and �(t) = 0 so
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x

t

a+M�a�M

a�a

Figure 4.2. Trapezium B for the energy estimate.

t > s0 with s < s0 < s + b/M , s, s0 2 [0, T ). We apply the previous inequality with
the test function '(t, x) = �(t)✓(|x| + Mt), with the observation (with the notation
F (u, v) = sgn(u(t, x)� v(t, x))[f(u(t, x))� f(v(t, x)))

|u(t, x)� v(t, x)|@t'+ F (u, v)@x' = |u(t, x)� v(t, x)|�0(t)✓(|x|+Mt)

+
⇣

F (u, v)sgn(x) +M |u(t, x)� v(t, x)|
⌘

�(t)✓0(|x|+Mt)

 |u(t, x)� v(t, x)|�0(t)✓(|x|+Mt)

since |F (u, v)|  M |u(t, x)� v(t, x)| and ✓0  0. By integration, we getˆ T

0

ˆ
R
|u(t, x)� v(t, x)|�0(t)✓(|x|+Mt) dt dx+

ˆ
R
|u0(x)� v0(x)|✓(|x|) dx � 0

(where we have used �(0) = 1). By taking ✓ converging to the characteristic function
of the domain [a, b], we deduce by the dominated convergence theorem

ˆ T

0

ˆ b+M(t�s)

a�M(t�s)
|u(t, x)� v(t, x)|�0(t) dt dx+

ˆ b

a
|u0(x)� v0(x)| dx � 0.

Denoting

h(t) :=

ˆ b+M(t�s)

a�M(t�s)
|u(t, x)� v(t, x)|�0(t) dt dx

which is a continuous function, we have thereforeˆ T

0
h(t)�0(t) dt+ h(0) � 0
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for all � 2 C1
c ((�1, s0)) with �(0) = 1. Defining ⇣" as an approximation of the Dirac

distribution with mass 1 at s and �(t) = 1 �
´ t
0 ⇣"(t) dt, we deduce by the dominated

convergence theoremˆ T

0
h(t)�0(t) dt+ h(0) = �

ˆ T

0
h(t)⇣"(t) dt+ h(0) ���!

"!0
�h(s) + h(0)

which proves that h(s)  h(0):
ˆ b+M(t�s)

a�M(t�s)
|u(t, x)� v(t, x)| dt 

ˆ b

a
|u0(x)� v0(x)| dx

and since the argument can be repeated for all times s 2 [0, T ) this proves that h(s) is
non-increasing.

Moreover by taking �a = b ! 1 we deduce also that

8 t 2 [0, T ), ku(t, ·)� v(t, ·)kL1(R)  ku0 � v0kL1(R).

This a fundamental contraction property, which is the key to solving the Cauchy
problem for scalar nonlinear transport equations. Unfortunately no such property
(possibly for a more complicated metrics) is known to this day in the case of systems,
which is a source of di�culty in this case.

We also deduce, taking v = 0 the zero solution

8 t 2 [0, T ), ku(t, ·)kL1(R)  ku0kL1(R).

Applying the definition of weak solution (implied by that of entropic solutions) with
'(t, x) = �(t)✓(x) with � as above and ✓ converging to 1 on R, thanks to the previous
L1 bound and the dominated convergence theorem we deduce thatˆ T

0

ˆ
R
(u(t, x)� v(t, x))�0(t) dt dx+

ˆ
R
(u0(x)� v0(x)) dx = 0

(be aware that there are no absolute values here), which implies by arguing as before

8 t 2 [0, T ),

ˆ
R
(u(t, x)� v(t, x)) dx =

ˆ
R
(u0(x)� v0(x)) dx.

We can now even deduce pointwise properties thanks to these L1 bounds by a
classical simple but elegant argument. Observe that if u0 � v0 almost everywhere on
R then

ku0 � v0kL1(R) =

ˆ
R
(u0(x)� v0(x)) dx.

From the bound above we deduce thatˆ
R
(u(t, x)� v(t, x)) dx =

ˆ
R
(u0(x)� v0(x)) dx

= ku0 � v0kL1(R) � ku(t, ·)� v(t, ·)kL1(R)

which implies that u(t, x) � v(t, x) almost everywhere on R for t 2 [0, T ). Observe that
taking v = 0 the zero solution this proves that if u0 � 0 a.e. then the solution remains
non-negative a.e. So most of the properties we would expect from the characteristic
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formula still hold, however now the L1 norm is not necessarily preserved and can
decrease (but not increase).

We can even go further and deduce properties on the total variation of the solution.
Let us introduce the space of bounded variations BV (R) as u0 2 BV (R) i↵ u0(·+h)�
u0(·) is integrable for all h 2 R and the following limit exists

TV (u0) = lim
h!0, h 6=0

ˆ
R
|u0(x+ h)� u0(x)| dx < +1.

Then observe that if u(t, x) is a solution then so is u(t, ·+ h) for any h 6= 0. From the
previous bounds we deduce that u(t, ·+ h)� u(t, ·) is integrable with

8 t 2 [0, T ),

ˆ
R
|u(t, x+ h)� u0(t, x)| dx 

ˆ
R
|u0(x+ h)� u0(x)| dx

which implies that

TV (u(t, ·))  TV (u0).

We therefore also have decay of the total variation, which is a stronger first-order
regularity property. ⇤

5. The wave equation

In this section we consider the wave equation

(5.1) @2t u = �xu = @2x1
+ · · ·+ @2xn

u, u = u(t, x), x = (x1, . . . , xn)

where the total dimension in space-time is ` = n+1. It is common notation to use the
shorthand

2 := @2t � @2x1
� · · ·� @2xn

for the so-called d’Alembertian operator and the wave equation then writes 2u =
0. Another common notation is to write R` = R1+n and say that the problem has
dimension “1 + n” in order to highlight to role played by the time variable.

This equation is now a system of transport equations. In space dimension n = 1,
define v = (v1, v2) = (u, @tu+ @xu), then the equation 2u = h writes

@tv1 + @xv1 = v2

@tv2 � @xv2 = h.

In higher space dimension n � 1, define Dx :=
p
��x, and v = (v1, v2) = (u, @tu +

iDxu), then the equation 2u = h writes

@tv1 + iDxv1 = v2

@tv2 � iDxv2 = h.

Hence one sees that they are two, rather than one, set of characteristic trajectories,
associated with speed ±1 (without normalisation of the constants this would be the
speed of sound, or light, etc.)

This is one of the most fundamental partial di↵erential equations. It was in fact the
first PDE to be studied and its study motivated the development of Fourier analysis.
It appeared originally in the context of the small vibrations of a string, and, in the
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linearisation of the (much more complicated) compressible Euler equations. It is also
“included” in the Maxwell equations for the electromagnetic field.

Time independent solutions of (5.1) satisfy the Laplace equation �u = 0. Thus,
study of the Laplace equation is naturally required in the study of (5.1). The wave
equation is the second prototypical example of hyperbolic equations, together with
scalar transport equations; it is in fact a prototype of a vectorial (first-order) transport
equation, but it is more commonly thought of as a second-order scalar equation. As we
discussed in the second chapter, if ellipticity is the property of the absence of charac-
teristic hypersurfaces, hyperbolicity essentially means that “there are as many charac-
teristic hypersurfaces as possible”. In particular any smooth hypersurface Sn�1 ⇢ Rn

can be extended to an hypersurface S̃n ⇢ Rn+1 which is characteristic. We shall not
attempt here to give a general definition in the way we did for ellipticity but we shall
see some important properties of hyperbolic equations on this example.

5.1. Hyperbolicity for second-order linear evolution equations.
5.1.1. The notion of hyperbolicity. Let us define our general setting. Consider U ⇢

Rn an open bounded set, and denote UT = U ⇥ (0, T ) for any time T > 0. Then define
the initial-boundary-value (in short “IBV”) problem

(5.2)

8

>

>

<

>

>

:

@2t u+Pu = f in UT ,

u = 0 on @U ⇥ [0, T ],

u = u0, @tu = u1 on {t = 0}⇥ U .
This corresponds to Dirichlet conditions on the (space) boundary. Other boundary
conditions could be possible such as the Neumann conditions @nu = 0 (where n is the
outer normal to the surface @U), or the impedance conditions @nu+Z(x)@tu with some
function Z(x) � 0. . . The source term of this problem is f : UT ! R, the initial data
are u0, u1 : U ! R, and the unknown function is u : UT ! R.

The operator P is defined as

(5.3) Pu := �
n
X

i,j=1

@xj (aij(t, x)@xiu) +
n
X

i=1

bi(t, x)@xiu+ c(t, x)u

in divergence form, and

(5.4) Pu := �
n
X

i,j=1

aij(t, x)@
2
xixj

u+
n
X

i=1

bi(t, x)@xiu+ c(t, x)u

in non-divergence form. We assume w.l.o.g. that aij = aji.

Definition 5.1. The operator @2t + P is hyperbolic at (t, x) if there a constant
✓(t, x) > 0 so that

(5.5)
n
X

i,j=1

aij(t, x)⇠i⇠j � ✓(t, x)|⇠|2.

It is said uniformly hyperbolic in UT if (5.5) holds at every points (t, x) 2 UT with a
uniform constant ✓ > 0.
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Observe that when A = (aij) = Id and B = (bi) = 0, f = 0, the operator P = ��x

and @2t +P = 2 corresponds exactly to the wave equation.

Exercise 50. Using the notions of the chapter 2, show that the hypersurface U ⇥
{t = 0} is non-characteristic, which is hint that we expect the Cauchy problem with
initial conditions on u and ut to be well-posed.

In particular show that, for analytic data, the Cauchy-Kowalevskaya theorem proves
the well-posedness for a small time T . Show furthermore that actually these solutions
can be extended to an arbitrary T , by studying the radius of convergence of the entire
series.

5.2. Energy estimates in the whole Euclidean space. Consider now again
the standard wave equation over the whole Euclidean space with source term:

(

2u = f in (0, T )⇥ Rn,

u = u0, @tu = u1 on {t = 0}⇥ Rn.

We will proceed in the exposition as for the Poisson equation. Assume a priori that
we have a classical C2 solution on UT . Assume also a priori that we know that u and
its derivatives decay fast enough at infinity in order to have the required integrability
in the following estimates (note that this clearly now falls oustide the realm of the
Cauchy-Kowalevskaya theorem).

The key (and fundamental) a priori estimate is the following. Multiply the equation
by @tu and integrate it over UT = [0, T ]⇥ Rn:

0 =

ˆ T

0

ˆ
Rn

@tu
�

@2t u��xu
�

dx dt

=
1

2

ˆ T

0

ˆ
Rn

@t |@tu|2 dx dt+

ˆ T

0

ˆ
Rn

(@trxu) ·rxu dx dt

=
1

2

ˆ T

0

ˆ
Rn

@t |@tu|2 dx dt+
1

2

ˆ T

0

ˆ
Rn

@t |rxu|2 dx dt

=

"

1

2

ˆ
Rn

|@tu|2 dx+
1

2

ˆ
Rn

|rxu|2 dx

#T

0

=



1

2

ˆ
Rn

|@tu(T, x)|2 dx+
1

2

ˆ
Rn

|rxu(T, x)|2 dx

�

�


1

2

ˆ
Rn

|@tu(0, x)|2 dx+
1

2

ˆ
Rn

|rxu(0, x)|2 dx

�

.

We hence deduce the conservation along time of the following energy (hence the
name “energy method”):

E(t) :=


1

2

ˆ
Rn

|@tu(t, x)|2 dx+
1

2

ˆ
Rn

|rxu(t, x)|2 dx

�

and this gives

8 t � 0, k@tu(t, ·)k2L2
x(Rn) + ku(t, ·)k2

Ḣ1
x(Rn)  ku0k2Ḣ1(Rn) + ku1k2L2(Rn).
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x 2 Rn

t 2 R

R0 + T�R0 � T

R0�R0

Figure 5.1. Trapezium C for the local energy estimate.

Exercise 51. Applying this to a di↵erence of two classical solutions with same
initial data and decay at infinity, prove the uniqueness of such solutions.

5.3. Local energy estimates. The fundamental a priori estimate will now be
made much more interesting by making it local and uncovering the cone of dependence.
This is reminiscent of the uniqueness estimate we proved in the Kruz̆kov Theorem. The
idea is now to apply the energy estimate to the trapezium

C :=
[

t2[0,T ]

{t}⇥B(x0, R0 + T � t)

for some given base point x0 and radius R0 > 0 (see Figure above).
Let us define the local energy

E(t) :=
ˆ
B(x0,R0+T�t)

✓

1

2
|@tu(t, x)|2 +

1

2
|rxu(t, x)|2

◆

dx

and di↵erentiate it in time:

d

dt
E(t) =

ˆ
B(x0,R0+T�t)

⇣

@2t u(t, x)@tu(t, x) dx+ (@trxu(t, x)) ·rxu(t, x)
⌘

dx

�
ˆ
@B(x0,R0+T�t)

✓

1

2
|@tu(t, x)|2 +

1

2
|rxu(t, x)|2

◆

dS

where the second integral is a surface integral.

Exercise 52. Check this calculation by computing the derivative of t 7!
´
B(x0,R0+T�t) F dx

for some F independent of t.

We now perform an integration by parts in the second term in the RHS:ˆ
B(x0,R0+T�t)

(@trxu(t, x)) ·rxu(t, x) dx
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= �
ˆ
B(x0,R0+T�t)

@tu(t, x)�xu(t, x) dx+

ˆ
@B(x0,R0+T�t)

@tu(t, x)
@u

@n
(t, x) dS

where @u/@n denotes the normal (outer) derivative of @B(x0, R0 + T � t).
We deduce that

d

dt
E(t) =

ˆ
B(x0,R0+T�t)

@tu(t, x)
⇣

@2t u(t, x)��xu(t, x)
⌘

dx

+

ˆ
@B(x0,R0+T�t)

✓

@tu(t, x)
@u

@n
(t, x)� 1

2
|@tu(t, x)|2 �

1

2
|rxu(t, x)|2

◆

dS.

The first term is zero thanks to the PDE, and in the second term observe that

@tu(t, x)
@u

@n
(t, x)  1

2
|@tu(t, x)|2 +

1

2

�

�

�

�

@u

@n
(t, x)

�

�

�

�

2

 1

2
|@tu(t, x)|2 +

1

2
|rxu(t, x)|2

which shows that

d

dt
E(t)  0 =) 0  E(t)  E(0).

This implies the fundamental property of the cone of dependency :

Proposition 5.2. For a classical solution, if u = @tu = 0 on B(x0, R0+T ) at time
t = 0, then u = 0 on the cone C defined above.

Remark 5.3. Observe that this fundamental property is not seen in the analytic
theory. For the wave equation it can be deduced from the explicit solutions but it is
much simpler to obtain it from energy estimates, and much more robust when dealing
with more general second-order hyperbolic equations or with nonlinear equations.

Let us now discuss a refinement of this a priori estimate that illustrates a key
principle, already encountered with parabolic equations: if a Lyapunov function is
found for a PDE, say which decays, it gives two bounds and not just one, by considering
the signed time-derivative of this quantity. Here

D(t) := � d

dt
E(t)

=

ˆ
@B(x0,R0+T�t)

✓

1

2
|@tu(t, x)|2 +

1

2
|rxu(t, x)|2 � @tu(t, x)

@u

@n
(t, x)

◆

dS

has to be time-integrable.
Let us now decompose nt := (1, 0, . . . , 0) 2 R1+n into n normal vector to the cone

and mV some vector field tangential to the cone. Let us also denote rV
x the x-gradient
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tangential to the cone, i.e. along @BR+T�t. Then
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

@t =
@

@n
+

@

@mV

|rxu(t, x)|2 =
�

�rV
x u(t, x)

�

�

2
+

�

�

�

�

@u

@n
(t, x)

�

�

�

�

2

|@tu(t, x)|2 =
�

�

�

�

@u

@n
(t, x)

�

�

�

�

2

+

�

�

�

�

@u

@mV
(t, x)

�

�

�

�

2

+ 2
@u

@n
(t, x)

@u

@mV
(t, x)

@tu(t, x)
@u

@n
(t, x) =

�

�

�

�

@u

@n
(t, x)

�

�

�

�

2

+
@u

@n
(t, x)

@u

@mV
(t, x)

which shows that

D(t) =

ˆ
@B(x0,R0+T�t)

 

1

2

�

�

�

�

@u

@mV
(t, x)

�

�

�

�

2

+
1

2

�

�rV
x u(t, x)

�

�

2

!

dS.

Remark 5.4. Here are some additional comments on this key a priori estimate.
It can in fact be performed with other non-characteristic surfaces. More generally one
can show that a characteristic hypersurface of 2 can be locally represented as level sets
g = cst of solutions g to the so-called eikonal equation

� (@tg)
2 + |rxg|2 = 0.

Correspondingly a non-characteristic hypersurface can be locally represented as a level
set of a g with � (@tg)

2+ |rxg|2 6= 0. The hypersurface is called spacelike if � (@tg)
2+

|rxg|2 < 0 and timelike otherwise. On the one hand, the local energy estimate can be
generalized to spacelike non-characteristic hypersurface, with a boundary of the domain
of dependence being a characteristic hypersurface and the associated boundary term
in the estimates being non-positive. On the other hand, the local energy estimate for
a timelike non-characteristic hypersurface gives nothing as the boundary term has no
sign. And it turns out that in this case the Cauchy problem is ill-posed (for n � 2).


