Practice Problems for Midterm 1

1. What is the volume of the solid obtained by revolving the region bounded by the line $y=2 x$ and the parabola $y=2-x^{2}$ about the line $x=1$?
2. Find the volume of the solid obtained by revolving the region bounded between the x-axis and the curve $y=\cosh x,-2 \leq x \leq 2$, about the x-axis.
Hint: Recall that $\cosh x=\frac{e^{x}+e^{-x}}{2}$.
3. Find the volume of the solid obtained by revolving about the x-axis the region bounded by the curve $y^{2}=\cos x$ and the lines $y=0, y=1, x=-\frac{\pi}{2}$, and $x=\frac{\pi}{2}$.
4. Find the length of the curve $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}$ for $1 \leq x \leq \sqrt{2}$.
5. Find the length of the curve $y=\frac{e^{x}}{4}+\frac{1}{e^{x}}$ for $0 \leq x \leq 1$.
6. Use an integral to find the surface area of the (side of the) cone obtained by revolving the line $y=2 x$ about the x-axis, for $0 \leq x \leq 3$.
7. Use an integral to find the surface area of the (side of the) cone obtained by revolving the line $y=2 x$ about the y-axis, for $0 \leq x \leq 3$.
8. What is the centroid of the region bounded by the curves $y=e^{x}$ and $y=-1$ for $0 \leq x \leq \ln 2$?
9. Compute the following trigonometric integrals:
a) $\int_{0}^{\pi / 2} \sin (x) \cos ^{3}(x) \mathrm{d} x$
b) $\int_{0}^{\pi / 2} \sin ^{2}(x) \cos ^{3}(x) \mathrm{d} x$
c) $\int_{0}^{3 \pi / 2} \sin ^{3}(x) \cos ^{3}(x) \mathrm{d} x$
d) $\int_{0}^{\pi / 6} \tan ^{4}(x) \sec ^{4}(x) \mathrm{d} x$
10. Use integration by parts to compute the following indefinite integrals:
a) $\int x e^{x} \mathrm{~d} x$
b) $\int e^{-x} \sin (x) \mathrm{d} x$
c) $\int x^{2} \sin (4 x) d x$
d) $\int \ln (4 x) \mathrm{d} x$
11. Use a trigonometric substitution to compute the following indefinite integrals:
a) $\int \frac{x}{\sqrt{9-x^{2}}} \mathrm{~d} x$
b) $\int \frac{1}{\sqrt{1+x^{2}}} \mathrm{~d} x$
c) $\int \sqrt{1-9 x^{2}} \mathrm{~d} x$
d) $\int \frac{1}{\sqrt{4 x-x^{2}}} \mathrm{~d} x$
