Math 110, Spring 2016 HWK03 due Feb 10

1. Compute these sums:
(a) $\sum_{n=0}^{14} 101+2 n$
(b) $\sum_{k=1}^{5}\left(\frac{2}{5}\right)^{k}$
(c) $\sum_{j=0}^{6} 5 M \cdot 2^{-j}$
2. Sum these infinite geometric series and simplify your answer as much as possible.
(a) $\sum_{n=0}^{\infty}(1-x)^{n}$
(b) $x-x y+x y^{2}-x y^{3}+\cdots$
(c) $1+\sqrt{\frac{1}{2}}+\frac{1}{2}+\cdots$
(d) $\sum_{j=1}^{\infty} M^{2} \sin (k T) \sqrt{2 \pi}^{j} e^{1-3 j}$

Hint: lots of stuff does not depend on the index of summation, j.
3. Write these sums in Sigma notation, then compute the sum.
(a) $\frac{2 j}{k}+\frac{2 j+3 k}{k}+\frac{2 j+6 k}{k}+\cdots+\frac{2 j+321 k}{k}$
(b) $3+\frac{1}{4}+\frac{1}{48}+\frac{1}{12 \cdot 48}+\cdots$
(c) $\frac{5}{6}-\frac{25}{36}+\frac{125}{216}-\frac{625}{1296}+\cdots$
4. You and I take turns flipping a fair coin. The first to get a HEADS wins. If you get to go first, what is your probability of winning?
5. What if there are 3 of us playing the same game; if you are going first, what is the probability that you get a HEADS before anyone else?
6. Use integrals to find upper and lower bounds for this sum.

$$
\sum_{n=1}^{8000} \frac{1}{\sqrt[3]{n}}
$$

