Math 110, Spring 2016 HWK05 due Feb 24

- 1. For each of these functions f(x), write a simple function, either cx^p or an exponential ce^{kx} , asymptotically equal to f as $x \to \infty$. You don't need to state a reason. The first one is done for you as an example (we gave a reason but you won't have to).
 - (a) $f(x) = \sqrt{e^x 1}$.

ANSWER: $f(x) \sim e^{(1/2)x}$. Reason: because 1 is a lot smaller than e^x , we can ignore the 1, so that $\sqrt{e^x - 1} \sim \sqrt{e^x} = e^{x/2}$.

(b)
$$f(x) = \frac{1}{\sqrt{x-9}}$$

(c)
$$f(x) = \frac{1}{e^x - x}$$

(d)
$$f(x) = \frac{x}{\sqrt{x^4 - 1}}$$

2. For each of these Type I integrals, write it as a limit, then say whether or not the limit converges to a finite value. Again, the first one is done for you. Note: this problem relies on the previous problem.

(a)
$$\int_1^\infty \sqrt{e^x - 1}$$

ANSWER: This is equal to $\lim_{M\to\infty} \int_1^M \sqrt{e^x - 1} \, dx$. Because the integrand is $\sim e^{(1/2)x}$ (see previous problem) and $\int_1^\infty e^{kx}$ diverges when k > 0, we conclude that the integral is divergent.

(b)
$$\int_2^\infty \frac{dx}{\sqrt{x-9}}$$

(c)
$$\int_{1}^{\infty} \frac{dx}{e^x - x}$$

(d)
$$\int_2^\infty \frac{x \, dx}{\sqrt{x^4 - 1}}$$

3. In each case, find a function g of the form $\frac{c}{x-a}$ such that $f \sim g$ as $x \to a$.

(a)
$$f(x) = \frac{1}{x^2 - 1}; a = 1$$

(b)
$$f(x) = \frac{x+1}{x^2 - 5x + 6}; a = 2$$

4. Suppose
$$0 < a < 10$$
 and $c \neq 0$. Does $\int_0^{10} \frac{c}{x-a} dx$ converge or not? Why?

- 5. The size of an astronomical object is modeled by a random variable X with density $\frac{C}{x(\ln x)^2}$ on the interval $[e, \infty]$, measured in kilograms.
 - (a) What is C?

(b) What is the median of this probability distribution?

(c) What is the 95^{th} percentile of this distribution?

- 6. The duration in minutes of a medical procedure is modeled by a random variable with probability density $C(1+t)^{-1/2}$ on the interval [0, 120].
 - (a) What is C?

(b) What is the average duration of the treatment?