Math 110, Spring 2016 HWK05 due Feb 24

1. For each of these functions $f(x)$, write a simple function, either $c x^{p}$ or an exponential $c e^{k x}$, asymptotically equal to f as $x \rightarrow \infty$. You don't need to state a reason. The first one is done for you as an example (we gave a reason but you won't have to).
(a) $f(x)=\sqrt{e^{x}-1}$.

ANSWER: $f(x) \sim e^{(1 / 2) x}$. Reason: because 1 is a lot smaller than e^{x}, we can ignore the 1 , so that $\sqrt{e^{x}-1} \sim \sqrt{e^{x}}=e^{x / 2}$.
(b) $f(x)=\frac{1}{\sqrt{x-9}}$
(c) $f(x)=\frac{1}{e^{x}-x}$
(d) $f(x)=\frac{x}{\sqrt{x^{4}-1}}$
2. For each of these Type I integrals, write it as a limit, then say whether or not the limit converges to a finite value. Again, the first one is done for you. Note: this problem relies on the previous problem.
(a) $\int_{1}^{\infty} \sqrt{e^{x}-1}$

ANSWER: This is equal to $\lim _{M \rightarrow \infty} \int_{1}^{M} \sqrt{e^{x}-1} d x$. Because the integrand is $\sim e^{(1 / 2) x}$ (see previous problem) and $\int_{1}^{\infty} e^{k x}$ diverges when $k>0$, we conclude that the integral is divergent.
(b) $\int_{2}^{\infty} \frac{d x}{\sqrt{x-9}}$
(c) $\int_{1}^{\infty} \frac{d x}{e^{x}-x}$
(d) $\int_{2}^{\infty} \frac{x d x}{\sqrt{x^{4}-1}}$
3. In each case, find a function g of the form $\frac{c}{x-a}$ such that $f \sim g$ as $x \rightarrow a$.
(a) $f(x)=\frac{1}{x^{2}-1} ; a=1$
(b) $f(x)=\frac{x+1}{x^{2}-5 x+6} ; a=2$
4. Suppose $0<a<10$ and $c \neq 0$. Does $\int_{0}^{10} \frac{c}{x-a} d x$ converge or not? Why?
5. The size of an astronomical object is modeled by a random variable X with density $\frac{C}{x(\ln x)^{2}}$ on the interval $[e, \infty]$, measured in kilograms.
(a) What is C ?
(b) What is the median of this probability distribution?
(c) What is the $95^{\text {th }}$ percentile of this distribution?
6. The duration in minutes of a medical procedure is modeled by a random variable with probability density $C(1+t)^{-1 / 2}$ on the interval $[0,120]$.
(a) What is C ?
(b) What is the average duration of the treatment?

