Homework Set 10

Due: Apr 13, 2017 (IN Class)

1. Compute the work done by the following force fields along the path $\gamma(t)=(\cos t, \sin t)$, where $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$:
a) $\vec{F}(x, y)=(x, y)$
b) $\vec{F}(x, y)=(x+y, 2 x y-3)$
c) $\vec{F}(x, y)=\left(6 x y-y^{3}, 3 y^{2}+3 x^{2}-3 x y^{2}\right)$
2. A 50 m long metal chain is hanging from the top of a building. Assuming that the acceleration due to gravity is $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and the density of the metal chain is constant at $2 \mathrm{~kg} / \mathrm{m}$, find the work required to lift 20 m of this chain up to the top. (Note that $30 m$ will remain hanging).
3. Let $\vec{F}=\nabla \varphi$, where $\varphi(x, y, z)=x^{2}+y^{2}+e^{z}$. Compute the following line integrals:
a) $I_{1}=\int_{\gamma} \vec{F} \mathrm{~d} \gamma$ where γ is any path from $(0,0,0)$ to $(1,1,1)$
b) $I_{2}=\int_{\gamma} \vec{F} \mathrm{~d} \gamma$ where γ is any path from $(1,1,1)$ to $(2,0,1)$
c) $I_{3}=\int_{\gamma} \vec{F} \mathrm{~d} \gamma$ where γ is any path from $(2,0,1)$ to $(0,0,0)$

Compute the sum $S=I_{1}+I_{2}+I_{3}$ and explain why the value of S could have been determined without any computations.
4. For the following vector fields \vec{F}, decide whether there exists $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such $\vec{F}=\nabla \varphi$. If yes, then find φ.
a) $\vec{F}=(x, y, z)$
b) $\vec{F}=\left(e^{x z}, x+y+z, 1\right)$
c) $\vec{F}=\left(2 x y, x^{2}+\cos (y), 0\right)$
d) $\vec{F}=\left(z^{2}, x+y, 4 \sin (x z)\right)$
5. Compute the following line integrals using Green's theorem (γ is assumed to be oriented counterclockwise):
a) $\int_{\gamma} x^{2} y \mathrm{~d} x+x y^{3} \mathrm{~d} y$ where γ is the square with vertices $(0,0),(0,1),(1,0),(1,1)$
b) $\int_{\gamma}(x+2 y) \mathrm{d} x+(x-2 y) \mathrm{d} y$ where γ is the curve determined by the arc of parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the line segment joining the same two points
c) $\int_{\gamma} x^{2} \mathrm{~d} x+y^{2} \mathrm{~d} y$ where γ is the curve determined by $x^{6}+y^{6}=1$

