Homework Set 10

DUE: APR 13, 2017 (IN CLASS)

- 1. Compute the work done by the following force fields along the path $\gamma(t) = (\cos t, \sin t)$, where $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$:
 - a) $\vec{F}(x,y) = (x,y)$
 - b) $\vec{F}(x,y) = (x+y, 2xy-3)$
 - c) $\vec{F}(x,y) = (x+y, 2xy-3)$ c) $\vec{F}(x,y) = (6xy-y^3, 3y^2+3x^2-3xy^2)$
- 2. A 50m long metal chain is hanging from the top of a building. Assuming that the acceleration due to gravity is $g = 10m/s^2$ and the density of the metal chain is constant at 2kg/m, find the work required to lift 20m of this chain up to the top. (Note that 30m will remain hanging).
- 3. Let $\vec{F} = \nabla \varphi$, where $\varphi(x, y, z) = x^2 + y^2 + e^z$. Compute the following line integrals:

a)
$$I_1 = \int_{\gamma} \vec{F} \, d\gamma$$
 where γ is any path from $(0,0,0)$ to $(1,1,1)$
b) $I_2 = \int_{\gamma} \vec{F} \, d\gamma$ where γ is any path from $(1,1,1)$ to $(2,0,1)$
c) $I_3 = \int_{\gamma} \vec{F} \, d\gamma$ where γ is any path from $(2,0,1)$ to $(0,0,0)$

Compute the sum $S = I_1 + I_2 + I_3$ and explain why the value of S could have been determined without any computations.

4. For the following vector fields \vec{F} , decide whether there exists $\varphi \colon \mathbb{R}^3 \to \mathbb{R}$ such $\vec{F} = \nabla \varphi$. If yes, then find φ .

a)
$$\vec{F} = (x, y, z)$$

b) $\vec{F} = (e^{xz}, x + y + z, 1)$
c) $\vec{F} = (2xy, x^2 + \cos(y), 0)$
d) $\vec{F} = (z^2, x + y, 4\sin(xz))$

- 5. Compute the following line integrals using Green's theorem (γ is assumed to be oriented counterclockwise):
 - a) $\int_{\gamma} x^2 y \, dx + x y^3 \, dy$ where γ is the square with vertices (0,0), (0,1), (1,0), (1,1)b) $\int_{\gamma} (x+2y) dx + (x-2y) dy$ where γ is the curve determined by the arc of parabola $y = x^2$ from (0,0) to (1,1) and the line segment joining the same two points c) $\int_{\gamma} x^2 dx + y^2 dy$ where γ is the curve determined by $x^6 + y^6 = 1$