DuE: Apr 20, 2017 (IN CLASS)

1. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and $g(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ for all $(x, y, z) \neq 0$. Compute:
a) $\Delta f=\operatorname{div} \nabla f$
b) $\Delta g=\operatorname{div} \nabla g$
c) $\nabla f \cdot \nabla g$
d) $\nabla f \times \nabla g$
2. Parametrize the ellipsoid $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1$, where $a, b, c>0$ and write down (but do not evaluate) an integral formula for its area.
3. Compute the following surface integrals of real-valued functions:
a) $\iint_{\Sigma} y \mathrm{~d} \Sigma$ where Σ is the surface $z=x+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 2$.
b) $\iint_{\Sigma} x z \mathrm{~d} \Sigma$ where Σ is the triangle with vertices $(1,0,0),(1,1,1)$, and ($0,0,2$).
c) $\iint_{\Sigma} z\left(x^{2}+y^{2}\right) \mathrm{d} \Sigma$ where Σ is the upper hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$.
4. Compute the following surface integrals of vector fields:
a) $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$ where $\vec{F}(x, y, z)=(x, y, z)$ and Σ is the sphere $x^{2}+y^{2}+z^{2}=9$.
b) $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$ where $\vec{F}(x, y, z)=(x+y) \vec{i}-(2 y+1) \vec{j}+z \vec{k}$ and Σ is the rectangle with vertices $(1,0,0),(1,0,1),(0,1,0)$, and $(0,1,1)$, oriented such that the outward unit normal \vec{n} satisfies $\vec{n} \cdot \vec{j}>0$.
c) $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$ where $\vec{F}(x, y, z)=\left(-x,-y, z^{2}\right)$ and Σ is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$, oriented such that the outward unit normal \vec{n} satisfies $\vec{n} \cdot \vec{k}<0$.
5. Use Stokes' Theorem to compute the following integrals:
a) $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$ where $\vec{F}(x, y, z)=(0,0, x)$ and Σ is the surface $z=x(1-x) y(1-y)$, with $0 \leq x \leq 1,0 \leq y \leq 1$. Hint: Note that $\vec{F}=\operatorname{curl} \vec{G}$ where $\vec{G}(x, y, z)=\left(0, \frac{1}{2} x^{2}, 0\right)$.
b) $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$ where $\vec{F}(x, y, z)=\left(z^{2}, y^{2}, x\right)$ and γ is the boundary of the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$ with counterclockwise orientation.
c) $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$ where $\vec{F}(x, y, z)=x^{3} e^{y} \vec{i}-3 x^{2} e^{y} \vec{j}$ and Σ is the unit upper hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$, with outward pointing unit normal.
